Skip to main content

Advertisement

Log in

Porous MnO2–CNTs–Cellophane Nanocomposite for High-Voltage Flexible Supercapacitors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Flexible MnO2–CNTs–cellophane electrode was easily fabricated via addition of NaHCO3 in matrix of manganese dioxide-carbon nanotubes-cellophane composite followed by selective etching of NaHCO3 in acidic solution to produce a porous network structure as result of CO2 (g) bubbling. Under the optimized mass loading, the flexible-porous electrode presented favorite electrochemical capacitance behavior with the areal capacitance of 121 and 55.5 mF cm−2 at the current density of 0.6 mA cm−2 in 1.0 M H2SO4 and Na2SO4 electrolytes, respectively. A symmetric all-solid-state supercapacitor assembled with the flexible MnO2/CNTs/cellophane electrode showed a wide working voltage (2.0 V), a high areal capacitance of 82.5 mF cm−2 at a current density of 2.0 mA cm−2, favorite flexibility and good cycling stability (83% after 2000 cycles at a current density of 2.0 mA cm−2). Therefore, such a simple and scalable procedure to produce flexible supercapacitor device based MnO2–CNTs composite is offering for future flexible energy storage systems.

Graphic Abstract

Flexible solid-state supercapacitor device based on MnO2–CNTs–cellophane electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Nitin, L. Chao, M. Julian, N. Narasimha, Z. Lei, J. Yeonwoong, T. Jayan, Adv. Mater. 29(21), 1605336 (2017)

    Article  Google Scholar 

  2. J. Yesuraj, O. Padmaraj, S. Austin Suthanthiraraj, J. Inorg, P. Organomet, J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01189-x

    Article  Google Scholar 

  3. W. Jia-Wei, Ch Ya, Ch Bai-Zhen, J. Alloy. Compd 688, 184–197 (2016)

    Article  Google Scholar 

  4. S. Sanjit, J. Wooree, M.C. Naresh, K. Hyeyoung, K. Tapas, Chem. Sel. 4(2), 589–599 (2019)

    Google Scholar 

  5. L. Zijian, Zh Qin, B. Yunfei, Adv. Mater. Interfaces 5(14), 1800438 (2018)

    Article  Google Scholar 

  6. Z. Ghebache, F. Hamidouche, Z. Safidine, M. Trari, B. Bellal, J. Inorg. Organomet. Polym. Mater. 29, 1548–1558 (2019)

    Article  CAS  Google Scholar 

  7. Zh Huajun, W. Jiaoxia, J. Yi, M. Chun'an, J. Power, Sources 216, 508–514 (2012)

    Article  Google Scholar 

  8. Zh Jinhui, W. Yanhui, Z. Jianbing, X. Guoxiang, J. Huiying, Y. Yungang, Mater. Chem. Phys S 143(2), 595–599 (2014)

    Article  Google Scholar 

  9. X. Ying, Z. Qiang, Y. Jun, W. Tong, F. Zhuangjun, W. Fei, Mater Chem. Phys. 684, 32–37 (2012)

    Google Scholar 

  10. R.T. Vinny, K. Chaitra, K. Venkatesh, N. Nagaraju, N. Kathyayini, J. Power, Sources 309, 212–220 (2016)

    Article  CAS  Google Scholar 

  11. Y. Jun, F. Zhuangjun, W. Tong, Ch Jie, Sh Bo, W. Kai, S. Liping, Zh Milin, J. Power, Sources 194(2), 1202–1207 (2009)

    Article  Google Scholar 

  12. K.P. Meenu, L.M. Lekshmi, M.P. Anjana, B.R. Raghavan, Chem. Sel. 3(11), 3234–3240 (2018)

    Google Scholar 

  13. J. Ye, D. Shi, Z. Yang, M. Chen, Polym. Sci. Ser. A 60, 647–654 (2018)

    Article  CAS  Google Scholar 

  14. L. Xinhua, W. Guangyong, W. Xiaowei, L. Xiaoping, J. Junhui, J. Mater. Chem 1(35), 10103–10106 (2013)

    Article  Google Scholar 

  15. L. Guo-Xian, H. Peng-Xiang, L. Jian, L. Jin-Cheng, L. Xin, W. Han, Sh Chao, L. Chang, Ch Hui-Ming, Carbon 140, 634–643 (2018)

    Article  Google Scholar 

  16. Zh Jinhui, W. Yanhui, Z. Jianbing, X. Guoxiang, Y. Yungang, Q. Xuanhui, Carbon 50(14), 5196–5202 (2012)

    Article  Google Scholar 

  17. L. Shengnan, L. Dagang, Appl. Surf. Sci 398, 33–42 (2017)

    Article  Google Scholar 

  18. Ch Shu-Lei, W. Jia-Zhao, Ch Sau-Yen, L. Hua-Kun, D. Shi-Xue. Electrochem. Commun 10(11), 1724–1727 (2008)

    Article  Google Scholar 

  19. J. Chung-Hwan, K. Kwang, J. Sensor, Actuat. A-Phys. 112(1), 107–115 (2004)

    Article  Google Scholar 

  20. W. Ke, G. Shan, D. Zhaolong, Y. Anbao, L. Wei, Ch Liwei, J. Power, Sources 305, 30–36 (2016)

    Article  Google Scholar 

  21. Zh Hongyan, Q. Chunhong, D. XiaoJun, Zh Hui, Zh Yu, M. Tiehua, S. Youyi, Int. J. Hydrog. Energy 44, 17544–17550 (2019)

    Article  Google Scholar 

  22. L. Xianbin, L. Changgan, X. Zechen, Z. Shuai, L. Kaixi, Y. Yanhong, L. Tongxiang, W. Zipping, ACS Appl. Energy Mater. 2, 3185–3193 (2019)

    Article  Google Scholar 

  23. L. Hongjiang, L. Xiaodong, W. Weiyan, H. Jinhua, L. Jia, H. Shiqiang, F. Bing, F. Junfeng, S. Weijie, Sol. Energy 188, 158–163 (2019)

    Article  Google Scholar 

  24. W. Yaohui, Zh Igor, Langmuir 25(17), 9684–9689 (2009)

    Article  Google Scholar 

  25. W. Jia-Wei, Y. Chen, B.Z. Chen, J. Alloys Compd 688, 184–197 (2016)

    Article  Google Scholar 

  26. Sh Xiaogang, L. Yang, Ch Rongsheng, N. Hongwei, Zh Weiting, Zh Bowei, Zh Feng, D. Shan, Electrochim. Acta 278, 61–71 (2018)

    Article  Google Scholar 

  27. F. Zhimin, Zh Jianpeng, S. Xinghui, Ch Zhongjun, L. Yuyan, W. Youshan, ACS Appl. Mater. Interfaces 9(26), 21763–21772 (2017)

    Article  Google Scholar 

  28. K. Yu Jin, Y. Yongju, K. Woong, ACS Appl. Mater. Interfaces 8(22), 13909–13917 (2017)

    Google Scholar 

  29. C. Quanhong, L. Lemei, Q. Huijie, S. Liman, Z. Yiwen, S. Wangzhou, H. Lei, ACS Appl. Energy Mater. 2(9), 6790–6799 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the office of vice chancellor of research of Urmia University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, R., Faraji, M. Porous MnO2–CNTs–Cellophane Nanocomposite for High-Voltage Flexible Supercapacitors. J Inorg Organomet Polym 30, 3438–3447 (2020). https://doi.org/10.1007/s10904-020-01546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01546-1

Keywords

Navigation