Skip to main content

Advertisement

Log in

A Microcosm Study on Effect of Iron Nanoparticles on Paddy (Oryza sativa) Growth

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanoparticles could be important in sustainable, environment friendly development of agricultural production. The objective of the present study was to synthesize iron nanoparticles (INPs) and examine their effect on growth of paddy plants. The INPs were synthesized by co-precipitation method and characterized by fourier transform infrared microscopy (FTIR), transmission electron microscopy (TEM) and particle size analysis (PSA). The synthesized particles were examined for their effect on growth of paddy plants using pot culture experiment. Various plant growth parameters like shoot length, root length, fresh and dry weight of plant and chlorophyll content was estimated in presence of various iron nanoparticle concentrations till 45 d. Interveinal chlorosis and iron content in plants also were examined. The data are suggestive of positive effects of INPs on paddy plants and confirm INPs as potential fertilizers for iron-deficient soils where paddy is grown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Eskandari, J. Appl. Environ. Biol. Sci. 1(10), 448–452 (2011)

    Google Scholar 

  2. A.M. Kumar, D. Soll, Plant Physiol 122, 49–56 (2000)

    Article  CAS  Google Scholar 

  3. N. Prasad, Soil fertility status of north-western states of India. (Chambal fertilizers and chemicals limited 2012). https://www.chambalfertilisers.com/pdf/annual/SoilFertilityBookApr1812OPf.pdf. Accessed on 21 June 2018.

  4. J.J. Lucena,  in Iron Nutrition in Plants and Rhizospheric Microorganisms, ed. By L.L. Barton, J. Abadia (Springer,  Dordrecht, 2006) p. 103

  5. P. Sanguansri, M.A. Augustin, Trends Food Sci.Technol. 17, 547–556 (2006)

    Article  CAS  Google Scholar 

  6. M. Rui, C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou, S. Zhu, Front. Plant Sci. 7, 815 (2016)

    Article  Google Scholar 

  7. R.K. Sastry, N.H. Rao, R. Cahoon, K. Tucker (2007).Cannanotechnology provide the innovations for a second green revolution in Indian agriculture, in Proceedings of the Nanoscale Science and Engineering Grantees Conference,  Arlington, VA

  8. J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew, M.S. Strano, Nat. Mater. 13, 400–408 (2014)

    Article  CAS  Google Scholar 

  9. Z.H. Zhang, M.F. Hossain, T. Takahashi, Appl. Catal. B 95, 423 (2010)

    Article  CAS  Google Scholar 

  10. M. Herlekar, S. Barve, R. Kumar, J. Nanopart. Res. 8 (2014) https://doi.org/10.1155/2014/140614

    Article  Google Scholar 

  11. F. Ghasemy-Piranloo, S. Dadashian, F. Bavarsiha, J. Inorg. Orgaomet. Polym. 30, 3740–3749 (2020)

    Article  CAS  Google Scholar 

  12. K.L. Palaniswamy, N.M. Sundaram, V. Devabharathi, P. Thangarasu, Dig. J. Nanomater. Biostruct. 8(2), 607–612 (2013)

    Google Scholar 

  13. T. Sulistyaningsih, S.J. Santosa, D. Siswanta, B. Rusdiarso, Int. J. Mater. Mech. Manuf. 5(1), 16–19 (2017)

    CAS  Google Scholar 

  14. N.D. Kandpal, N. Shah, R. Loshali, R. Joshi, J. Prasad, J. Sci. Ind. Res. India. 73, 87–90 (2013)

    Google Scholar 

  15. W.L. Lindsay, W.A. Norvell, Soil Sci. Soc. Am. J. 42, 421–428 (1978)

    Article  CAS  Google Scholar 

  16. Y. Guan, Z. Fei, T. Chen, G. Jiang, H. Weiwei, X. Liu, Y. Yang, R. Carlini, J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01559-w

    Article  Google Scholar 

  17. M. Kumar, H.S. Dosanjh, H. Singh, J. Inorg. Organomet. Polym. 28, 880–898 (2018)

    Article  CAS  Google Scholar 

  18. A.A. Gadgeel, S.T. Mhaske, C. Duerr, J. Inorg. Organomet. Polym. 29, 1688–1700 (2019)

    Article  CAS  Google Scholar 

  19. G.R. Rout, S. Sahoo, Rev. Agric. Sci. 3, 1–24 (2015)

    Article  Google Scholar 

  20. P. Berger, A. Adelman, K. Beckman, D. Campbell, A.B. Ellis, G.C. Lisensky, J. Chem. Educ. 76(7), 943–948 (1999)

    Article  CAS  Google Scholar 

  21. S.A. Mahdy, Q.J. Raheed, P.T. Kalaichelvan, Int. J. Mod. Eng. Res. 2, 578–581 (2012)

    Google Scholar 

  22. Priyanka, Simran, A. Singh, V. Verma, Int. J. Eng. 2, 4 (2013)

    Google Scholar 

  23. S.Y.R. Paik, J.S. Kim, S.J. Shin, S. Ko, Int. J. Mol. Sci. 16, 22243–22257 (2015)

    Article  CAS  Google Scholar 

  24. N. Pariona, A. Martinez, H. Hdz-García, C. Luis, H.-V. Adolfo, Saudi J. Biol. Sci. 24(7), 1547–1554 (2017)

    Article  CAS  Google Scholar 

  25. K. Shankramma, S. Yallappa, M.B. Shivanna, J. Manjanna, Appl. Nano. sci. 6, 983–990 (2016)

    Article  CAS  Google Scholar 

  26. I. Kokina, P. Ilona, J. Marija, A. Petrova, J. Plant. Interact. 15(1), 1–7 (2020)

    Article  CAS  Google Scholar 

  27. R. Sheykhbaglou, M. Sedghi, M.T. Shishevan Mohammad, S. Mehdi, R. Sharifi, Notulae Sci. Biol. (2010). https://doi.org/10.15835/nsb.2.2.4667

    Article  Google Scholar 

  28. S. Kumar, A.K. Patra, S.C. Datta, K.G. Rosin, T.J. Purakayastha, Int. J. Adv. Res. 3, 854–865 (2015)

    Google Scholar 

  29. D. Alidoust, A. Isoda, Acta Physiol. Plant. 35, 3365–3375 (2013). https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  30. D. Alidoust, A. Isoda, Environ. Earth Sci. 71, 5173–5182 (2014). https://doi.org/10.1007/s12665-013-2920-z

    Article  CAS  Google Scholar 

  31. X. Gui, Y. Deng, Y. Rui, B. Gao, W. Luo, S. Chen, L. Van Nhan, X. Li, S. Liu, Y. Han, L. Liu, B. Xing, Environ. Sci. Pollut. Res. Int. 22, 17716–17723 (2015). https://doi.org/10.1007/s11356-015-4976-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful of Central Salt and Marine Chemical Research Institute (CSMCRI), Council of Scientific and Industrial Research, Bhavnagar, India for providing instrumentation facility for student’s work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti K. Vyas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutariya, B.P., Vyas, T.K., Faldu, P.R. et al. A Microcosm Study on Effect of Iron Nanoparticles on Paddy (Oryza sativa) Growth. J Inorg Organomet Polym 31, 2425–2435 (2021). https://doi.org/10.1007/s10904-020-01866-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01866-2

Keywords

Navigation