Skip to main content
Log in

Synthesis of Fe3O4/SiO2/TiO2-Ag Photo-Catalytic Nano-structures with an Effective Silica Shell for Degradation of Methylene blue

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, Fe3O4/SiO2/TiO2-Ag (FST-Ag) nanoparticles were provided with chemical techniques (sol–gel) during successive steps. At first, Fe3O4 nanoparticles were synthesized via co-precipitation method. Then, Fe3O4/SiO2 (FS) core/shell particles were prepared in presence of different amounts of TEOS precursor. Next, deposition of TiO2 shells was obtained using hydroxypropyl cellulose (HPC) polymer (as a surfactant) to prevent the agglomeration. Finally, Ag nanoparticles deposited on Fe3O4/SiO2/TiO2 (FST) core/shell/shell structure using polyvinyl pyrrolidone (PVP) polymer. The prepared nanoparticles were characterized by XRD, FESEM (with EDX), and TEM techniques. Magnetic properties of the prepared composites were studied by VSM. The result revealed Fe3O4/SiO2/TiO2-Ag nanoparticle photo-catalyst with core/shell magnetic structure were synthesized successfully at each step in presences of suitable additives. Photocatalytic performance of the nanoparticles indicated that Ag nanoparticles increased the removal of methylene blue up to 83% after 3 h. The magnetic properties of these particles also showed that after deposition of layers, nanoparticles have a good ability for the recovery and separation from the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Ahmad, R. Alrozi, Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 171, 510–516 (2011)

    CAS  Google Scholar 

  2. F. Al-Momani, E. Touraud, J. Degorce-Dumas, J. Roussy, O. Thomas, Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. J. Photochem. Photobiol., A 153, 191–197 (2002)

    CAS  Google Scholar 

  3. H. Gao, S. Zhao, X. Cheng, X. Wang, L. Zheng, Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J. 223, 84–90 (2013)

    CAS  Google Scholar 

  4. V. Ponnusami, S. Vikram, S. Srivastava, Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152, 276–286 (2008)

    CAS  PubMed  Google Scholar 

  5. C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38, 2775–2781 (2004)

    CAS  PubMed  Google Scholar 

  6. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    CAS  Google Scholar 

  7. H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao, G. Zeng, Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286, 41–48 (2012)

    CAS  Google Scholar 

  8. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004)

    CAS  PubMed  Google Scholar 

  9. I. Carra, J.A. Sánchez Pérez, S. Malato, O. Autin, B. Jefferson, P. Jarvis, Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. J. Chem. Technol. Biotechnol 91, 72–81 (2016)

    CAS  Google Scholar 

  10. A. Aleboyeh, M.E. Olya, H. Aleboyeh, Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process. Chem. Eng. J. 137, 518–524 (2008)

    CAS  Google Scholar 

  11. S. Eydivand, M. Nikazar, Degradation of 1, 2-Dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chem. Eng. Commun. 202, 102–111 (2015)

    CAS  Google Scholar 

  12. F. Bavarsiha, M. Montazeri-Pour, M. Rajabi, Effect of non-aqueous media on nano-crystalline SrFe12O19 particles produced by co-precipitation with metal chlorides and evaluation of their magnetic and photocatalytic properties. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01414-7

    Article  Google Scholar 

  13. J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A 216, 35–43 (2004)

    CAS  Google Scholar 

  14. J. Wang, J. Yang, X. Li, B. Wei, D. Wang, H. Song, H. Zhai, X. Li, Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation. J. Mol. Catal. A 406, 97–105 (2015)

    CAS  Google Scholar 

  15. Q. Yuan, N. Li, W. Geng, Y. Chi, X. Li, Preparation of magnetically recoverable Fe3O4@SiO2@ meso-TiO2 nanocomposites with enhanced photocatalytic ability. Mater. Res. Bull. 47, 2396–2402 (2012)

    CAS  Google Scholar 

  16. A. Haarstrick, O.M. Kut, E. Heinzle, TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ. Sci. Technol. 30, 817–824 (1996)

    CAS  Google Scholar 

  17. H. Liu, Z. Jia, S. Ji, Y. Zheng, M. Li, H. Yang, Synthesis of TiO2/SiO2@ Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal. Today 175, 293–298 (2011)

    CAS  Google Scholar 

  18. Y. Gao, B. Chen, H. Li, Y. Ma, Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater. Chem. Phys. 80, 348–355 (2003)

    CAS  Google Scholar 

  19. D. Beydoun, R. Amal, G.K.-C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B 104, 4387–4396 (2000)

    CAS  Google Scholar 

  20. V. Belessi, D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, T. Albanis, D. Petridis, Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. Appl. Catal. B 87, 181–189 (2009)

    CAS  Google Scholar 

  21. Q. Wu, J. Ouyang, K. Xie, L. Sun, M. Wang, C. Lin, Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. J. Hazard. Mater. 199, 410–417 (2012)

    PubMed  Google Scholar 

  22. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation. J. Am. Chem. Soc. 127, 3928–3934 (2005)

    CAS  PubMed  Google Scholar 

  23. X. He, Y. Cai, H. Zhang, C. Liang, Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 21, 475–480 (2011)

    CAS  Google Scholar 

  24. J. Cheng, R. Ma, M. Li, J. Wu, F. Liu, X. Zhang, Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties. Chem. Eng. J. 210, 80–86 (2012)

    CAS  Google Scholar 

  25. N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, M.Z.-C. Hu, Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 38, 373–379 (1999)

    CAS  Google Scholar 

  26. F. Bavarsiha, M. Rajabi, M. Montazeri-Pour, Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue. J. Mater. Sci. 29, 1877–1887 (2018)

    CAS  Google Scholar 

  27. B. Cui, H. Peng, H. Xia, X. Guo, H. Guo, Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Sep. Purif. Technol. 103, 251–257 (2013)

    CAS  Google Scholar 

  28. M.-P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@TiO2 and Ag/Fe3O4@SiO2@TiO2 nanocomposites for water treatment: process optimization by response surface methodology. J. Electron. Mater. 47, 7484–7496 (2018)

    CAS  Google Scholar 

  29. F. Ghasemy-Piranloo, S. Dadashian, F. Bavarsiha, Fe3O4/SiO2/TiO2-Ag cubes with core/shell/shell nano-structure: synthesis, characterization and efficient photo-catalytic for phenol degradation. J. Mater. Sci. 30, 1–12 (2019)

    Google Scholar 

  30. F. Ghasemy-Piranloo, F. Bavarsiha, S. Dadashian, M. Rajabi, Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00359-x

    Article  Google Scholar 

  31. X. Sun, F. Liu, L. Sun, Q. Wang, Y. Ding, Well-dispersed Fe3O4/SiO2 nanoparticles synthesized by a mechanical stirring and ultrasonication assisted Stöber method. J. Inorg. Organomet. Polym Mater. 22, 311–315 (2012)

    CAS  Google Scholar 

  32. S.A. Kulkarni, P. Sawadh, P.K. Palei, Synthesis and characterization of superparamagnetic Fe3O4@SiO2 nanoparticles. J. Korean Chem. Soc. 58, 100–104 (2014)

    CAS  Google Scholar 

  33. S.C. Pang, S.Y. Kho, S.F. Chin, Fabrication of magnetite/silica/titania core-shell nanoparticles. J. Nanomater. 2012, 125 (2012)

    Google Scholar 

  34. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chemistry 16, 6243–6250 (2010)

    CAS  PubMed  Google Scholar 

  35. Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, W. Yan, Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 262, 404–411 (2013)

    CAS  PubMed  Google Scholar 

  36. X. Huang, G. Wang, M. Yang, W. Guo, H. Gao, Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65, 2887–2890 (2011)

    CAS  Google Scholar 

  37. M.M.A. Nikje, M.A.F. Nejad, K. Shabani, M. Haghshenas, Preparation of magnetic polyurethane rigid foam nanocomposites. Colloid Polym. Sci. 291, 903–909 (2013)

    Google Scholar 

  38. Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. A 262, 87–93 (2005)

    CAS  Google Scholar 

  39. C. Hui, C. Shen, J. Tian, L. Bao, H. Ding, C. Li, Y. Tian, X. Shi, H.-J. Gao, Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701–705 (2011)

    CAS  PubMed  Google Scholar 

  40. E. Khafizova, R. Islamgaliev, Effect of severe plastic deformation on the structure and mechanical properties of Al-Cu-Mg alloy. IOP Conf. Ser. 63, 012081 (2014)

    Google Scholar 

  41. J. Lee, M. Othman, Y. Eom, T. Lee, W. Kim, J. Kim, The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core–shell particles for photo-catalysis of methyl orange. Microporous Mesoporous Mater. 116, 561–568 (2008)

    CAS  Google Scholar 

  42. J.-W. Lee, K. Hong, W.-S. Kim, J. Kim, Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles. J. Ind. Eng. Chem. 11, 609–614 (2005)

    CAS  Google Scholar 

  43. J. Kim, H. Lim, Separation of selenite from inorganic selenium ions using TiO2 magnetic nanoparticles. Bull. Korean Chem. Soc. 34, 3362–3366 (2013)

    CAS  Google Scholar 

  44. X. Yu, S. Liu, J. Yu, Superparamagnetic γ-Fe2O3@SiO2@ TiO2 composite microspheres with superior photocatalytic properties. Appl. Catal. B 104, 12–20 (2011)

    CAS  Google Scholar 

  45. X. Wang, L. Wang, X. He, Y. Zhang, L. Chen, A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 78, 327–332 (2009)

    CAS  PubMed  Google Scholar 

  46. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manag. 92, 311–330 (2011)

    CAS  Google Scholar 

  47. E. Sanchez, T. Lopez, Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materials. Mater. Lett. 25, 271–275 (1995)

    CAS  Google Scholar 

  48. S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi, S. Matsuzawa, Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Appl. Catal. B 57, 109–115 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biosphere Technology Company and all experiments were performed in the Environmental Laboratory of this Company

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeideh Dadashian or Fatemeh Bavarsiha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemy-Piranloo, F., Dadashian, S. & Bavarsiha, F. Synthesis of Fe3O4/SiO2/TiO2-Ag Photo-Catalytic Nano-structures with an Effective Silica Shell for Degradation of Methylene blue. J Inorg Organomet Polym 30, 3740–3749 (2020). https://doi.org/10.1007/s10904-020-01511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01511-y

Keywords

Navigation