Skip to main content
Log in

Developing Soil Microbial Inoculants for Pest Management: Can One Have Too Much of a Good Thing?

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Soil microbes present a novel and cost-effective method of increasing plant resistance to insect pests and thus create a sustainable opportunity to reduce current pesticide application. However, the use of microbes in integrated pest management programs is still in its infancy. This can be attributed primarily to the variations in microbial inoculum performance under laboratory and field conditions. Soil inoculants containing single, indigenous microbial species have shown promising results in increasing chemical defenses of plants against foliar feeding insects. Conversely, commercial inoculants containing multiple species tend to show no effects on herbivore infestation in the field. We present here a simple model that endeavours to explain how single and multiple species in microbial inoculants differentially govern insect population dynamics via changes in plant chemical profiles. We discuss further how this knowledge can be applied to manipulate soil microbial species and develop ‘tailored’ microbial inoculants that could be used in plant protection against antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allizadeh H et al (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babikova Z et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4. doi:10.3389/fpls.2013.00165

  • Be’Er A, Zhang H, Florin EL, Payne SM, Ben-Jacob E, Swinney HL (2009) Deadly competition between sibling bacterial colonies. Proc Natl Acad Sci U S A 106:428–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutard-Hunt C, Smart CD, Thaler J, Nault BA (2009) Impact of plant growth-promoting rhizobacteria and natural enemies on Myzus persicae (Hemiptera: Aphididae) infestations in pepper. J Econ Entomol 102:2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670

    Article  CAS  PubMed  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8:e70633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springerplus 3:391

    Article  PubMed  PubMed Central  Google Scholar 

  • Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154

    Google Scholar 

  • Daniell T, Husband R, Fitter A, Young J (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Engelmoer DJ, Behm JE, Toby Kiers E (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593

    Article  CAS  PubMed  Google Scholar 

  • Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Fontana A, Reichelt M, Hempel S, Gershenzon J, Unsicker SB (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol 35:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadhave KR (2015) Interactions between plant growth promoting rhizobacteria, foliar-feeding insects and higher trophic levels. PhD thesis, University of London

  • Gange AC (2001) Species‐specific responses of a root‐and shoot‐feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  • Gange A, West H (1994) Interactions between arbuscular mycorrhizal fungi and foliar‐feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2005) Ecological specificity of arbuscular mycorrhizae: evidence from foliar-and seed-feeding insects. Ecology 86:603–611

    Article  Google Scholar 

  • Gange AC, Eschen R, Schroeder V (2012) The soil microbial community and plant foliar defences against insects. In: Iason GR, Dicke M, Hartley SE (eds) The ecology of plant secondary metabolites: from genes to global processes. Cambridge University Press, UK, pp 170–188

    Chapter  Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal–plant–insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM (1998) Diversity of root‐associated bacteria associated with field‐grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Gollotte A, Gianinazzi-Pearson V, Giovannetti M, Sbrana C, Avio L, Gianinazzi S (1993) Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a ‘locus a’myc−mutant of Pisum sativum L. Planta 191:112–122

    Article  CAS  Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth−promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002

    Article  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hoffmann D, Vierheilig H, Schausberger P (2011a) Arbuscular mycorrhiza enhances preference of ovipositing predatory mites for direct prey‐related cues. Physiol Entomol 36:90–95

    Article  Google Scholar 

  • Hoffmann D, Vierheilig H, Schausberger P (2011b) Mycorrhiza-induced trophic cascade enhances fitness and population growth of an acarine predator. Oecologia 166:141–149

    Article  PubMed  Google Scholar 

  • Hortal S, Bastida F, Armas C, Lozano Y, Moreno J, García C, Pugnaire F (2013) Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biol Biochem 64:139–146

    Article  CAS  Google Scholar 

  • Hourston JE (2015) Do mycorrhizal fungi facilitate root defence signalling in belowground predator–prey interactions? PhD thesis, University of London

  • Jaber LR, Vidal S (2010) Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol Entomol 35:25–36

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kerry B (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  CAS  PubMed  Google Scholar 

  • Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA (2014) Ergosterol, an orphan fungal microbe‐associated molecular pattern (MAMP). Mol Plant Pathol 15:747–761

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Verlag, Berlin, Heidelberg, pp 33–52

    Chapter  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Kröber M et al (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252

    PubMed  PubMed Central  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Martinuz A, Schouten A, Menjivar R, Sikora R (2012) Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biol Control 62:206–212

    Article  Google Scholar 

  • McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310

    Article  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7:e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangesti N, Weldegergis BT, Langendorf B, van Loon JJ, Dicke M, Pineda A (2015) Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 178:1169–1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Patiño-Ruiz JD, Schausberger P (2014) Spider mites adaptively learn recognizing mycorrhiza-induced changes in host plant volatiles. Exp Appl Acarol 64:455–463

    Article  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, Van Loon J, Dicke M (2012) Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biol 14:83–90

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schausberger P, Peneder S, Juerschik S, Hoffmann D (2012) Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol 26:441–449

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Guimarães PR, Olesen JM, Thompson JN (2014) Assembly of complex plant–fungus networks. Nat Commun 5:5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int. doi:10.1155/2013/863240

    PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Ammar HB, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:1–6

    Article  CAS  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernandez MG, Ibarra-Laclette E, Delano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231:397–410

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent S, Van Wees S, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930

    Article  PubMed  Google Scholar 

  • Van Wees S, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Vannette RL, Hunter MD (2013) Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. J Ecol 101:1019–1029

    Article  CAS  Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Werner GDA, Kiers ET (2014) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524

    Article  PubMed  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Article  Google Scholar 

  • Zhang L et al (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Andreas Ebertz for help in producing artwork, to three anonymous authors for constructive feedback, and to Royal Holloway, University of London and the Natural Environment Research Council for providing the financial support to carry out field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran R. Gadhave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadhave, K.R., Hourston, J.E. & Gange, A.C. Developing Soil Microbial Inoculants for Pest Management: Can One Have Too Much of a Good Thing?. J Chem Ecol 42, 348–356 (2016). https://doi.org/10.1007/s10886-016-0689-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0689-8

Keywords

Navigation