Skip to main content

Advertisement

Log in

Dynamic properties of glucose complexity during the course of critical illness: a pilot study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Methods to control the blood glucose (BG) levels of patients in intensive care units (ICU) improve the outcomes. The development of continuous BG levels monitoring devices has also permitted to optimize these processes. Recently it was shown that a complexity loss of the BG signal is linked to poor clinical outcomes. Thus, it becomes essential to decipher this relation to design efficient BG level control methods. In previous studies the BG signal complexity was calculated as a single index for the whole ICU stay. Although, these approaches did not grasp the potential variability of the BG signal complexity. Therefore, we setup this pilot study using a continuous monitoring of central venous BG levels in ten critically ill patients (EIRUS platform, Maquet Critical CARE AB, Solna, Sweden). Data were processed and the complexity was assessed by the detrended fluctuation analysis and multiscale entropy (MSE) methods. Finally, recordings were split into 24 h overlapping intervals and a MSE analysis was applied to each of them. The MSE analysis on time intervals revealed an entropy variation and allowed periodic BG signal complexity assessments. To highlight differences of MSE between each time interval we calculated the MSE complexity index defined as the area under the curve. This new approach could pave the way to future studies exploring new strategies aimed at restoring blood glucose complexity during the ICU stay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BG:

Blood glucose

CGM:

Continuous glucose monitoring

COPD:

Chronic obstructive pulmonary disease

CVC:

Central venous catheter

DFA:

Detrended fluctuation analysis

ICU:

Intensive care unit

MSE:

Multiscale entropy

CI:

Complexity index

SampEn:

Sample entropy

References

  1. Vanhorebeek I, Langouche L, Van den Berghe G. Tight blood glucose control with insulin in the ICU: facts and controversies. Chest. 2007;132:268–78. https://doi.org/10.1378/chest.06-3121.

    Article  CAS  PubMed  Google Scholar 

  2. Umpierrez GE, Isaacs SD, Bazargan N, et al. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87:978–82. https://doi.org/10.1210/jcem.87.3.8341.

    Article  CAS  PubMed  Google Scholar 

  3. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67. https://doi.org/10.1056/NEJMoa011300.

    Article  PubMed  Google Scholar 

  4. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39. https://doi.org/10.1056/NEJMoa070716.

    Article  CAS  PubMed  Google Scholar 

  5. Preiser J-C, Devos P, Ruiz-Santana S, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35:1738–48. https://doi.org/10.1007/s00134-009-1585-2.

    Article  CAS  PubMed  Google Scholar 

  6. NICE-SUGAR Study Investigators, Finfer S, Liu B, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18. https://doi.org/10.1056/NEJMoa1204942.

    Article  CAS  Google Scholar 

  7. Ichai C, Preiser J-C. Société Française d’Anesthésie-Réanimation. International recommendations for glucose control in adult non diabetic critically ill patients. Crit Care. 2010;14:R166. https://doi.org/10.1186/cc9258.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Finfer S, Wernerman J, Preiser J-C, et al. Clinical review: consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit Care. 2013;17:229. https://doi.org/10.1186/cc12537.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krinsley JS, Chase JG, Gunst J, et al. Continuous glucose monitoring in the ICU: clinical considerations and consensus. Crit Care. 2017;21:197. https://doi.org/10.1186/s13054-017-1784-0.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vanhorebeek I, Gunst J, Van den Berghe G. Critical care management of stress-induced hyperglycemia. Curr DiabRep. 2018;18:17. https://doi.org/10.1007/s11892-018-0988-2.

    Article  Google Scholar 

  11. Wallia A, Umpierrez GE, Rushakoff RJ, et al. Consensus statement on inpatient use of continuous glucose monitoring. J Diabetes Sci Technol. 2017;11:1036–44. https://doi.org/10.1177/1932296817706151.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Preiser J-C, Chase JG, Hovorka R, et al. Glucose control in the ICU. J Diabetes Sci Technol. 2016;10:1372–81. https://doi.org/10.1177/1932296816648713.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wernerman J, Desaive T, Finfer S, et al. Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit Care. 2014;18:226. https://doi.org/10.1186/cc13921.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Egi M, Bellomo R, Stachowski E, et al. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.

    Article  CAS  Google Scholar 

  15. Lanspa MJ, Dickerson J, Morris AH, et al. Coefficient of glucose variation is independently associated with mortality in critically ill patients receiving intravenous insulin. Crit Care. 2014;18:R86. https://doi.org/10.1186/cc13851.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mackenzie IMJ, Whitehouse T, Nightingale PG. The metrics of glycaemic control in critical care. Intensive Care Med. 2011;37:435–43. https://doi.org/10.1007/s00134-010-2103-2.

    Article  CAS  PubMed  Google Scholar 

  17. Lundelin K, Vigil L, Bua S, et al. Differences in complexity of glycemic profile in survivors and nonsurvivors in an intensive care unit: a pilot study. Crit Care Med. 2010;38:849–54. https://doi.org/10.1097/CCM.0b013e3181ce49cf.

    Article  CAS  PubMed  Google Scholar 

  18. Brunner R, Adelsmayr G, Herkner H, et al. Glycemic variability and glucose complexity in critically ill patients: a retrospective analysis of continuous glucose monitoring data. Crit Care. 2012;16:R175. https://doi.org/10.1186/cc11657.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Engoren M, Schwann TA, Habib RH. Hyperglycemia, hypoglycemia, and glycemic complexity are associated with worse outcomes after surgery. J Crit Care. 2014. https://doi.org/10.1016/j.jcrc.2014.03.014.

    Article  PubMed  Google Scholar 

  20. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7. https://doi.org/10.1126/science.298.5594.824.

    Article  CAS  PubMed  Google Scholar 

  21. Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996;347:1312–4.

    Article  CAS  Google Scholar 

  22. Goldberger AL, Amaral LAN, Hausdorff JM, et al. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99:2466–72. https://doi.org/10.1073/pnas.012579499.

    Article  PubMed  Google Scholar 

  23. Crenier L, Lytrivi M, Van Dalem A, et al. Glucose complexity estimates insulin resistance in either nondiabetic individuals or in type 1 diabetes. J Clin Endocrinol Metab. 2016;101:1490–7. https://doi.org/10.1210/jc.2015-4035.

    Article  CAS  PubMed  Google Scholar 

  24. van Hooijdonk RTM, Abu-Hanna A, Schultz MJ. Glycemic variability is complex—is glucose complexity variable? Crit Care. 2012;16:178. https://doi.org/10.1186/cc11834.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schierenbeck F, Nijsten MWN, Franco-Cereceda A, Liska J. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit Care. 2014;18:R56. https://doi.org/10.1186/cc13808.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89:068102.

    Article  Google Scholar 

  27. Schierenbeck F, Öwall A, Franco-Cereceda A, Liska J. Evaluation of a continuous blood glucose monitoring system using a central venous catheter with an integrated microdialysis function. Diabetes Technol Ther. 2013;15:26–31. https://doi.org/10.1089/dia.2012.0169.

    Article  CAS  PubMed  Google Scholar 

  28. Costa MD, Henriques T, Munshi MN, et al. Dynamical glucometry: use of multiscale entropy analysis in diabetes. Chaos. 2014;24:033139. https://doi.org/10.1063/1.4894537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–7. https://doi.org/10.1063/1.166141.

    Article  CAS  PubMed  Google Scholar 

  30. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:H2039–49.

    Article  CAS  Google Scholar 

  31. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

    Google Scholar 

  32. Ihlen EAF. Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol. 2012;3:141. https://doi.org/10.3389/fphys.2012.00141.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–20.

    CAS  PubMed  Google Scholar 

  34. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;71:021906.

    Article  Google Scholar 

  35. Ogata H, Tokuyama K, Nagasaka S et al (2007) Long-range correlated glucose fluctuations in diabetes. Methods Inf Med 46:222–226

    Article  CAS  Google Scholar 

  36. Ogata H, Tokuyama K, Nagasaka S et al (2006) Long-range negative correlation of glucose dynamics in humans and its breakdown in diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 291:R1638–R1643. https://doi.org/10.1152/ajpregu.00241.2006

    Article  CAS  PubMed  Google Scholar 

  37. Hu K, Ivanov PC, Chen Z, et al. Effect of trends on detrended fluctuation analysis. Phys Rev E. 2001;64:011114. https://doi.org/10.1103/PhysRevE.64.011114.

    Article  CAS  Google Scholar 

  38. Yentes JM, Hunt N, Schmid KK, et al. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41:349–65. https://doi.org/10.1007/s10439-012-0668-3.

    Article  PubMed  Google Scholar 

  39. Cobelli C, Schiavon M, Man CD, et al. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: insight from an in silico study. Diabetes Technol Ther. 2016. https://doi.org/10.1089/dia.2016.0112.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Signal M, Thomas F, Shaw GM, Chase JG. Complexity of continuous glucose monitoring data in critically ill patients: continuous glucose monitoring devices, sensor locations, and detrended fluctuation analysis methods. J Diabetes Sci Technol. 2013;7:1492–506.

    Article  Google Scholar 

  41. Cengiz E, Tamborlane WV. A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol Ther. 2009;11(Suppl 1):11–6. https://doi.org/10.1089/dia.2009.0002.

    Article  Google Scholar 

  42. Song I-K, Lee J-H, Kang J-E, et al. Continuous glucose monitoring system in the operating room and intensive care unit: any difference according to measurement sites? J Clin Monit Comput. 2017;31:187–94. https://doi.org/10.1007/s10877-015-9804-6.

    Article  PubMed  Google Scholar 

  43. Schierenbeck F, Franco-Cereceda A, Liska J. Evaluation of a continuous blood glucose monitoring system using central venous microdialysis. J Diabetes Sci Technol. 2012;6:1365–71.

    Article  Google Scholar 

  44. Rooyackers O, Blixt C, Mattsson P, Wernerman J. Continuous glucose monitoring by intravenous microdialysis. Acta Anaesthesiol Scand. 2010;54:841–7. https://doi.org/10.1111/j.1399-6576.2010.02264.x.

    Article  CAS  PubMed  Google Scholar 

  45. Gow B, Peng C-K, Wayne P, Ahn A. Multiscale entropy analysis of center-of-pressure dynamics in human postural control: methodological considerations. Entropy. 2015;17:7926–47. https://doi.org/10.3390/e17127849.

    Article  Google Scholar 

  46. Pørksen N. The in vivo regulation of pulsatile insulin secretion. Diabetologia. 2002;45:3–20. https://doi.org/10.1007/s001250200001.

    Article  PubMed  Google Scholar 

  47. Rahaghi FN, Gough DA. Blood glucose dynamics. Diabetes Technol Therapeutics. 2008;10:81–94. https://doi.org/10.1089/dia.2007.0256.

    Article  CAS  Google Scholar 

  48. Nilsson J, Panizza M, Hallett M. Principles of digital sampling of a physiologic signal. Electroencephalogr Clin Neurophysiol. 1993;89:349–58.

    Article  CAS  Google Scholar 

  49. Chen J-L, Chen P-F, Wang H-M. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am J Physiol Regul Integr Comp Physiol. 2014;307:R179–83. https://doi.org/10.1152/ajpregu.00108.2014.

    Article  CAS  PubMed  Google Scholar 

  50. Costa M, Peng CK, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A. 2003;330:53–60. https://doi.org/10.1016/j.physa.2003.08.022.

    Article  Google Scholar 

  51. Green GC, Bradley B, Bravi A, Seely AJE. Continuous multiorgan variability analysis to track severity of organ failure in critically ill patients. J Crit Care. 2013;28:879.e1–11. https://doi.org/10.1016/j.jcrc.2013.04.001.

    Article  Google Scholar 

  52. Zhang XD, Pechter D, Yang L, et al. Decreased complexity of glucose dynamics preceding the onset of diabetes in mice and rats. PLoS ONE. 2017;12:e0182810. https://doi.org/10.1371/journal.pone.0182810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Chen C, Cao Z, et al. Entropy change of biological dynamics in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2997–3005. https://doi.org/10.2147/COPD.S140636.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen C, Jin Y, Lo IL, et al. Complexity change in cardiovascular disease. Int J Biol Sci. 2017;13:1320–8. https://doi.org/10.7150/ijbs.19462.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kohnert K-D, Heinke P, Vogt L, et al. Associations of blood glucose dynamics with antihyperglycemic treatment and glycemic variability in type 1 and type 2 diabetes. J Endocrinol Investig. 2017;40:1201–7. https://doi.org/10.1007/s40618-017-0682-2.

    Article  CAS  Google Scholar 

  56. Seely AJE, Bravi A, Herry C, et al. Do heart and respiratory rate variability improve prediction of extubation outcomes in critically ill patients? Crit Care. 2014;18:R65. https://doi.org/10.1186/cc13822.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holder AL, Clermont G. Using what you get: dynamic physiologic signatures of critical illness. Crit Care Clin. 2015;31:133–64. https://doi.org/10.1016/j.ccc.2014.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Skjaervold NK, Knai K, Elvemo N. Some oscillatory phenomena of blood glucose regulation: An exploratory pilot study in pigs. PLoS ONE. 2018;13:e0194826. https://doi.org/10.1371/journal.pone.0194826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Aude.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godat, E., Preiser, JC., Aude, JC. et al. Dynamic properties of glucose complexity during the course of critical illness: a pilot study. J Clin Monit Comput 34, 361–370 (2020). https://doi.org/10.1007/s10877-019-00299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-019-00299-8

Keywords

Navigation