Skip to main content
Log in

Antimicrobial and Photocatalytic Degradation Activities of Chitosan-coated Magnetite Nanocomposite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, iron oxide nanoparticles (Fe3O4 NPs) were modified by chitosan (CS). Fe3O4 NPs were synthesized by co-precipitation method and their antimicrobial potential and photo-catalytic degradation of Chloramine T (CT) were investigated. The free Fe3O4 NPs and chitosan-coated Fe3O4 NPs (CS-Fe3O4 NPs) were characterized by XRD, FTIR, SEM, and HRTEM. Fe3O4 NPs have spherical shape and their diameter varied from 18.0 nm to 25.0 nm with average particle size at 21.0 nm. Antimicrobial activity was tested towards some pathogenic bacteria and Candida cells as zone of inhibition (ZOI) and minimum inhibitory concentration (MIC). UV-assisted photocatalytic degradation of CT was investigated. Various parameters affecting the photocatalytic efficiency such as (pH on CT removal, CT initial concentration, and adsorbent dose) were studied. Antimicrobial results showed that CS-Fe3O4 NPs possesses a maximum potential against Escherichia coli, Bacillus subtilis and Candida albicans, by 18.0, 17.0, 14.2 mm ZOI, respectively. Results obtained from the photocatalytic activity indicated that CS-Fe3O4 NPs (2.0 gm/l) possessed a promising removal potential, achieving 86.0% removal of CT in the neutral solution (pH = 7.0). The synthesized CS-Fe3O4 NPs are effective for the removal of CT and potent disinfectant agent for pathogenic microbes with possible application in the wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Patra, J.K., et al., Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 2018. 16(1): p. 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. El-Batal, A., et al., Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Journal of Pharmaceutical Research International, 2014: p. 1341-1363.

    Google Scholar 

  3. Singh, A.P., et al., Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal transduction and targeted therapy, 2019. 4(1): p. 1-21.

    Article  CAS  Google Scholar 

  4. Díaz-García, D., et al., Preparation and study of the antibacterial applications and oxidative stress induction of copper maleamate-functionalized mesoporous silica nanoparticles. Pharmaceutics, 2019. 11(1): p. 30.

    Article  PubMed Central  CAS  Google Scholar 

  5. Wong, C.W., et al., Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. Journal of Cluster Science, 2020. 31(2): p. 367-389.

    Article  CAS  Google Scholar 

  6. Elkhenany, H., et al., Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: implications for stem cell tracking. International journal of biological macromolecules, 2020. 143: p. 763-774.

    Article  PubMed  CAS  Google Scholar 

  7. Abd Elkodous, M., et al., Fabrication of Ultra-Pure Anisotropic Zinc Oxide Nanoparticles via Simple and Cost-Effective Route: Implications for UTI and EAC Medications. Biological trace element research, 2020. 196: p. 297-317.

    Article  PubMed  CAS  Google Scholar 

  8. Abd Elkodous, M., et al., Engineered nanomaterials as potential candidates for HIV treatment: Between opportunities and challenges. Journal of Cluster Science, 2019. 30(3): p. 531-540.

    Article  CAS  Google Scholar 

  9. Kluchova, K., et al., Superparamagnetic maghemite nanoparticles from solid-state synthesis–Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials, 2009. 30(15): p. 2855-2863.

    Article  PubMed  CAS  Google Scholar 

  10. Nehra, P., et al., Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British journal of biomedical science, 2018. 75(1): p. 13-18.

    Article  PubMed  CAS  Google Scholar 

  11. Su, C., Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of hazardous materials, 2017. 322: p. 48-84.

    Article  PubMed  CAS  Google Scholar 

  12. Park, Y.-H., et al., Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Molecular & Cellular Toxicology, 2013. 9(1): p. 67-74.

    Article  CAS  Google Scholar 

  13. Li, Q., et al., Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3 O 4 nanoparticles. Scientific reports, 2017. 7(1): p. 1-7.

    Article  CAS  Google Scholar 

  14. Nejadshafiee, V., et al., Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Materials Science and Engineering: C, 2019. 99: p. 805-815.

    Article  CAS  Google Scholar 

  15. Frimpong, R.A. and J.Z. Hilt, Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine, 2010. 5(9): p. 1401-1414.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta, A.K., et al., Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials, 2005. 26(18): p. 3995-4021.

    Article  PubMed  CAS  Google Scholar 

  18. Unsoy, G., et al., Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. Journal of Nanoparticle Research, 2012. 14(11): p. 964.

    Article  CAS  Google Scholar 

  19. Zhang, Y., H.F. Chan, and K.W. Leong, Advanced materials and processing for drug delivery: the past and the future. Advanced drug delivery reviews, 2013. 65(1): p. 104-120.

    Article  PubMed  CAS  Google Scholar 

  20. Verma, M., K. Singh, and M.S. Bakshi, Surface active magnetic iron oxide nanoparticles for extracting metal nanoparticles across an aqueous–organic interface. Journal of Materials Chemistry C, 2019. 7(34): p. 10623-10634.

    Article  CAS  Google Scholar 

  21. Nam, J., et al., Surface engineering of inorganic nanoparticles for imaging and therapy. Advanced drug delivery reviews, 2013. 65(5): p. 622-648.

    Article  PubMed  CAS  Google Scholar 

  22. Hotze, E.M., T. Phenrat, and G.V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of environmental quality, 2010. 39(6): p. 1909-1924.

    Article  PubMed  CAS  Google Scholar 

  23. Schladt, T.D., et al., Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Transactions, 2011. 40(24): p. 6315-6343.

    Article  PubMed  CAS  Google Scholar 

  24. Bakshi, P.S., et al., Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules, 2020. 150: p. 1072-1083.

    Article  PubMed  CAS  Google Scholar 

  25. Kumar, S., et al., Chitosan nanocomposite coatings for food, paints, and water treatment applications. Applied Sciences, 2019. 9(12): p. 2409.

    Article  CAS  Google Scholar 

  26. Ngah, W.W., L. Teong, and M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate polymers, 2011. 83(4): p. 1446-1456.

    Article  CAS  Google Scholar 

  27. Shrifian-Esfahni, A., et al., Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik, 2015. 69(1): p. 19-32.

    Google Scholar 

  28. Bradbury, R.S., et al., Antimicrobial susceptibility testing of cystic fibrosis and non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa: a comparison of three methods. British journal of biomedical science, 2011. 68(1): p. 1-4.

    Article  PubMed  CAS  Google Scholar 

  29. Saxena, S. and C. Gomber, Comparative in vitro antimicrobial procedural efficacy for susceptibility of Staphylococcus aureus, Escherichia coli and Pseudomonas species to chloramphenicol, ciprofloxacin and cefaclor. British journal of biomedical science, 2008. 65(4): p. 178-183.

    Article  PubMed  CAS  Google Scholar 

  30. Nobile, C.J. and A.D. Johnson, Candida albicans biofilms and human disease. Annual review of microbiology, 2015. 69: p. 71-92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Manikandan, C. and A. Amsath, Antibiotic susceptibility pattern of Escherichia coli isolated from urine samples in Pattukkottai, Tamilnadu. Int. J. Curr. Microbiol. App. Sci, 2014. 3(10): p. 449-457.

    Google Scholar 

  32. Yoon, J.E., et al., Antibiotic susceptibility and imaging findings of the causative microorganisms responsible for acute urinary tract infection in children: a five-year single center study. Korean journal of pediatrics, 2011. 54(2): p. 79.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Habib, S., Highlights for management of a child with a urinary tract infection. International journal of pediatrics, 2012. 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campbell, M.M. and G. Johnson, Chloramine T and related N-halogeno-N-metallo reagents. Chemical Reviews, 1978. 78(1): p. 65-79.

    Article  CAS  Google Scholar 

  35. Goehring, R.R., Chloramine. Encyclopedia of Reagents for Organic Synthesis, 2001.

  36. Roorda, B.M., H.L. Nienhuis, and M.L. Schuttelaar, Anaphylactic reaction caused by skin contact with the disinfectant chloramine‐T. Contact dermatitis, 2019. 80(5): p. 321-322.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kanerva, L., et al., Occupational allergic contact urticaria from chloramine-T solution. Contact Dermatitis, 1997. 37(4): p. 180-181.

    Article  PubMed  CAS  Google Scholar 

  38. Blomqvist, A., et al., Atopic allergy to chloramine-T and the demonstration of specific IgE antibodies by the radioallergosorbent test. International archives of occupational and environmental health, 1991. 63(5): p. 363-365.

    Article  PubMed  CAS  Google Scholar 

  39. Pham, X.N., et al., Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016. 7(4): p. 045010.

    Google Scholar 

  40. Zavvar Mousavi, H. and S. Seyedi, Kinetic and equilibrium studies on the removal of Pb (II) from aqueous solution using nettle ash. Journal of the Chilean Chemical Society, 2010. 55(3): p. 307-311.

    Article  Google Scholar 

  41. El-Batal, A.I., et al., Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. Journal of Cluster Science, 2017. 28(3): p. 1083-1112.

    Article  CAS  Google Scholar 

  42. Baraka, A., et al., Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chemical Papers, 2017. 71(11): p. 2271-2281.

    Article  CAS  Google Scholar 

  43. El-Batal, A.I., et al., Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial pathogenesis, 2018. 118: p. 159-169.

    Article  PubMed  CAS  Google Scholar 

  44. El-Batal, A.I., et al., Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. International journal of biological macromolecules, 2018. 107: p. 2298-2311.

    Article  PubMed  CAS  Google Scholar 

  45. Balouiri, M., M. Sadiki, and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 2016. 6(2): p. 71-79.

    Article  PubMed  Google Scholar 

  46. El-Batal, A.I., et al., Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens. Journal of Cluster Science, 2019. 30(4): p. 947-964.

    Article  CAS  Google Scholar 

  47. Mosallam, F.M., et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial pathogenesis, 2018. 122: p. 108-116.

    Article  PubMed  CAS  Google Scholar 

  48. Attia, M.S., et al., Spirulina platensis-Polysaccharides Promoted Green Silver Nanoparticles Production Using Gamma Radiation to Suppress the Expansion of Pear Fire Blight-Producing Erwinia amylovora. Journal of Cluster Science, 2019. 30(4): p. 919-935.

    Article  CAS  Google Scholar 

  49. El-Sayyad, G.S., et al., Facile biosynthesis of tellurium dioxide nanoparticles by Streptomyces cyaneus melanin pigment and gamma radiation for repressing some Aspergillus pathogens and bacterial wound cultures. Journal of Cluster Science, 2020. 31(1): p. 147-159.

    Article  CAS  Google Scholar 

  50. Abd Elkodous, M., et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 2019. 180: p. 411-428.

    Article  PubMed  CAS  Google Scholar 

  51. Brownlee, K., Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. 1952, JSTOR.

    Google Scholar 

  52. Amoli Diva, M. and K. Pourghazi, Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin. Nanomedicine Research Journal, 2017. 2(1): p. 18-27.

    CAS  Google Scholar 

  53. Stoia, M., R. Istratie, and C. Păcurariu, Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. Journal of Thermal Analysis and Calorimetry, 2016. 125(3): p. 1185-1198.

    Article  CAS  Google Scholar 

  54. Kataria, N. and V. Garg, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism. Chemosphere, 2018. 208: p. 818-828.

    Article  PubMed  CAS  Google Scholar 

  55. Tang, Z.-X. and B.-F. Lv, MgO nanoparticles as antibacterial agent: preparation and activity. Brazilian Journal of Chemical Engineering, 2014. 31(3): p. 591-601.

    Article  Google Scholar 

  56. Ashour, A., et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 2018. 40: p. 141-151.

    Article  CAS  Google Scholar 

  57. Maksoud, M.A., et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial pathogenesis, 2019. 127: p. 144-158.

    Article  PubMed  CAS  Google Scholar 

  58. El-Sayyad, G.S., et al., Merits of photocatalytic and antimicrobial applications of gamma-irradiated CoxNi1-xFe2O4/SiO2/TiO2; x= 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Advances, 2020. 10(9): p. 5241-5259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 2007. 73(6): p. 1712-1720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ma, S., et al., Responses of the Microbial Community Structure in Fe (II)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 2019. 3(5): p. 738-747.

    Article  CAS  Google Scholar 

  61. El-Batal, A.I., et al., Nystatin-mediated bismuth oxide nano-drug synthesis using gamma rays for increasing the antimicrobial and antibiofilm activities against some pathogenic bacteria and Candida species. RSC Advances, 2020. 10(16): p. 9274-9289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hezma, A., A. Rajeh, and M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 581: p. 123821.

    Article  CAS  Google Scholar 

  63. El-Sayyad, G.S., et al., Gentamicin-Assisted Mycogenic Selenium Nanoparticles Synthesized Under Gamma Irradiation for Robust Reluctance of Resistant Urinary Tract Infection-Causing Pathogens. Biological Trace Element Research, 2020. 195: p. 323-342.

    Article  PubMed  CAS  Google Scholar 

  64. El-Batal, A.I., F.M. Mosallam, and G.S. El-Sayyad, Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes. Journal of Cluster Science, 2018. 29(6): p. 1003-1015.

    Article  CAS  Google Scholar 

  65. Matei, E., et al., Leaching tests for synthesized magnetite nanoparticles used as adsorbent for metal ions from liquid solutions. Digest Journal of Nanomaterials and Biostructures, 2011. 6(4): p. 1701-1708.

    Google Scholar 

  66. Chiou, M.-S., P.-Y. Ho, and H.-Y. Li, Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and pigments, 2004. 60(1): p. 69-84.

    Article  CAS  Google Scholar 

  67. Wahab, H.S. and A.A. Hussain, Photocatalytic oxidation of phenol red onto nanocrystalline TiO 2 particles. Journal of Nanostructure in Chemistry, 2016. 6(3): p. 261-274.

    Article  CAS  Google Scholar 

  68. Ollis, D.F., Kinetics of photocatalyzed reactions: Five lessons learned. Frontiers in chemistry, 2018. 6: p. 378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Abd Elkodous, M., et al., Carbon-dot-loaded Cox Ni1–x Fe2 O4; x= 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Scientific Reports, 2020. 10(1): p. 11534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Abdel Maksoud, M.I.A., et al., Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials, 2020. 399: p. 123000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Figures 6 and 12 in this paper were created with BioRender.com.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed M. El-Khawaga or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participation and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khawaga, A.M., Farrag, A.A., Elsayed, M.A. et al. Antimicrobial and Photocatalytic Degradation Activities of Chitosan-coated Magnetite Nanocomposite. J Clust Sci 32, 1107–1119 (2021). https://doi.org/10.1007/s10876-020-01869-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01869-6

Keywords

Navigation