Skip to main content
Log in

Spirulina platensis-Polysaccharides Promoted Green Silver Nanoparticles Production Using Gamma Radiation to Suppress the Expansion of Pear Fire Blight-Producing Erwinia amylovora

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present research examined the influence of eco-friendly silver nanoparticles (Ag NPs) synthesized by Spirulina platensis-polysaccharides and gamma rays on the growth of bacterial plant pathogen which caused pear fire blight. Plant pathogen was isolated from blighted blossoms, leaves, and thin slices of cankerous branches of the pear and identified both biochemically and genetically as Erwinia amylovora. Silver nitrate was mixed with S. platensis-polysaccharide and used for the biogenic Ag NPs biosynthesis under the influence of gamma radiation. The synthesized Ag NPs was characterized by UV–Vis., HRTEM, DLS, XRD, FTIR, SEM, EDX, and mapping analysis. Data received from HRTEM and DLS calculated the average particles size of the spherical Ag NPs and was found to be 25.25 nm. FTIR analysis determined a polysaccharide which extracted from S. platensis and effective for the reduction of Ag+. Ag NPs exhibited antibacterial potential against E. amylovora (17.0 mm ZOI), while Ag+ possesses activity about 8.0 mm ZOI, and S. platensis filtrate possesses no activity against the tested bacteria. Owing to the different characteristics of the biogenic Ag NPs as purity, antibacterial activity and green eco-friendly method, they may be applied in the agriculture field as pure, safe and new nanomaterial-based treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Van der Zwet, N. Orolaza-Halbrendt, and W. Zeller Fire Blight: History, Biology, and Management (American Phytopathological Society, St. Paul, 2012).

    Google Scholar 

  2. T. Van Der Zwet and S. V. Beer Fire Blight: Its Nature, Prevention, and Control: A Practice Guide to Integrated Disease Management (Agriculture information bulletin, Washington, 1992).

    Google Scholar 

  3. T. Doolotkeldieva and S. Bobusheva (2016). Adv. Microbiol. 6, (11), 831.

    Article  CAS  Google Scholar 

  4. M. Schroth, S. Thomson, D. Hildebrand, and W. Moller (1974). Ann. Rev. Phytopathol. 12, (1), 389–412.

    Article  Google Scholar 

  5. J. Paulin and G. Lachaud, Comparison of the efficiency of some chemicals in preventing fireblight blossom infections, III International Workshop on Fire Blight vol. 151, (1983), pp. 209–214.

  6. K. Shameli, M. Bin Ahmad, E. A. Jaffar Al-Mulla, N. A. Ibrahim, P. Shabanzadeh, A. Rustaiyan, Y. Abdollahi, S. Bagheri, S. Abdolmohammadi, and M. S. Usman (2012). Molecules 17, (7), 8506–8517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. A. Ponce and K. J. Klabunde (2005). J. Mol. Catal. A Chem. 225, (1), 1–6.

    Article  CAS  Google Scholar 

  8. M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar, and M. M. ul Hasan (2010). Ann. Microbiol. 60, (1), 75–80.

    Article  CAS  Google Scholar 

  9. A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci. 29, (6), 1003–1015.

    Article  CAS  Google Scholar 

  10. A. I. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, and G. S. El-Sayyad (2018). Microb. Pathog. 118, 159–169.

    Article  CAS  PubMed  Google Scholar 

  11. F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Microb. Pathog. 122, 108–116.

    Article  CAS  PubMed  Google Scholar 

  12. A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Basic Microbiol. 56, (5), 531–540.

    Article  CAS  PubMed  Google Scholar 

  13. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (ACS Publications, Washington, 2003).

    Google Scholar 

  14. D. Longano, N. Ditaranto, L. Sabbatini, L. Torsi, and N. Cioffi Synthesis and Antimicrobial Activity of Copper Nanomaterials, Nano-Antimicrobials (Springer, Berlin, 2012), pp. 85–117.

    Google Scholar 

  15. A. I. El-Batal, F. M. Mosalam, M. Ghorab, A. Hanora, and A. M. Elbarbary (2018). Int. J. Biol. Macromol. 107, 2298–2311.

    Article  CAS  PubMed  Google Scholar 

  16. G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol. 29, (11), 2616–2625.

    Article  CAS  Google Scholar 

  17. M. M. Ghobashy and T. M. Mohamed (2018). J. Inorg. Organomet. Polym. Mater. 28, (6), 2297–2305.

    Article  CAS  Google Scholar 

  18. A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamry, K. M. Agaypi, M. A. Elsayed, and M. Gobara (2017). J. Photochem. Photobiol. B Biol. 173, 120–139.

    Article  CAS  Google Scholar 

  19. K. Ishaq, A. A. Saka, A. O. Kamardeen, A. Ahmed, M. I. H. Alhassan, and H. Abdullahi (2017). Int. J. Eng. Sci. Technol. 20, (2), 563–569.

    Article  Google Scholar 

  20. M. M. Ghobashy and M. R. Khafaga (2017). J. Polym. Environ. 25, (2), 343–348.

    Article  CAS  Google Scholar 

  21. A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamery, and M. Gobara (2017). J. Clust. Sci. 28, (3), 1083–1112.

    Article  CAS  Google Scholar 

  22. M. Ghorab, A. El-Batal, A. Hanora, and F. M. A. Mosalam (2016). Br. Biotechnol. J. 16, (1), 1–25.

    Article  Google Scholar 

  23. A. El-Batal, M. H. El-Sayed, B. M. Refaat, and A. A. Z. Askar (2014). Br. J. Pharm. Res. 4, (21), 2525.

    Article  Google Scholar 

  24. A. El-Batal, B. M. Haroun, A. A. Farrag, A. Baraka, and G. S. El-Sayyad (2014). Br. J. Pharm. Res. 4, (11), 1341.

    Article  Google Scholar 

  25. W. Wijesinghe and Y.-J. Jeon (2012). Carbohydr. Polym. 88, (1), 13–20.

    Article  CAS  Google Scholar 

  26. R. Chaiklahan, N. Chirasuwan, P. Triratana, V. Loha, S. Tia, and B. Bunnag (2013). Int. J. Biol. Macromol. 58, 73–78.

    Article  CAS  PubMed  Google Scholar 

  27. A. Parikh and D. Madamwar (2006). Bioresour. Technol. 97, (15), 1822–1827.

    Article  CAS  PubMed  Google Scholar 

  28. Z. Persin, K. Stana-Kleinschek, T. J. Foster, J. E. Van Dam, C. G. Boeriu, and P. Navard (2011). Carbohydr. Polym. 84, (1), 22–32.

    Article  CAS  Google Scholar 

  29. H. Majdoub, M. B. Mansour, F. Chaubet, M. S. Roudesli, and R. M. Maaroufi (2009). Biochim. Biophys.Acta (BBA) Gen. Subj. 1790, (10), 1377–1381.

    Article  CAS  Google Scholar 

  30. N. Chirasuwan, R. Chaiklahan, M. Ruengjitchatchawalya, B. Bunnag, and M. Tanticharoen (2007). Kasetsart J. Nat. Sci. 41, 311–318.

    CAS  Google Scholar 

  31. Y. M. Amin, A. M. Hawas, A. El-Batal, S. H. Hassan, and M. E. Elsayed (2016). Br. J. Pharmacol. Toxicol. 7, (4), 36–50.

    Article  CAS  Google Scholar 

  32. M. M. Ghobashy, S. A. Alkhursani, and M. Madani (2018). Polym. Bull. 75, 5477–5492.

    Article  CAS  Google Scholar 

  33. A. El-Batal, A. El-Baz, F. Abo Mosalam, and A. Tayel (2013). J. Chem. Pharm. Res. 5, (8), 1–15.

    Google Scholar 

  34. A. I. EL-Batal and S. F. Ahmed (2018) Braz. Oral Res. 32, 1–9.

    Article  Google Scholar 

  35. A. I. El-Batal, F. A. E.-L. Gharib, S. M. Ghazi, A. Z. Hegazi, and A. G. M. A. E. Hafz (2016). Nanomater. Nanotechnol. 6, 13.

    Article  CAS  Google Scholar 

  36. A. I. El-Batal, N. M. Sidkey, A. Ismail, R. A. Arafa, and R. M. Fathy (2016). J. Chem. Pharm. Res 8, (4), 934–951.

    CAS  Google Scholar 

  37. A.-W. A. Ismail, N. M. Sidkey, R. A. Arafa, R. M. Fathy, and A. I. El-Batal (2016). Br. Biotechnol. J. 12, (3), 1.

    Article  Google Scholar 

  38. A. Baraka, S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. Tawfic (2017). Chem. Pap. 71, (11), 2271–2281.

    Article  CAS  Google Scholar 

  39. R. R. Banala, V. B. Nagati, and P. R. Karnati (2015). Saudi J. Biol. Sci. 22, (5), 637–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T. Miller and M. Schroth (1972). Phytopathology 62, 1175–1182.

    Article  Google Scholar 

  41. C. Kado and M. Heskett (1970). Phytopathology 60, (6), 969–976.

    Article  CAS  PubMed  Google Scholar 

  42. J. Crosse and R. Goodman (1973). Phytopathology 63, (11), 1425–1426.

    Article  Google Scholar 

  43. E. O. King, M. K. Ward, and D. E. Raney (1954). Transl. Res. 44, (2), 301–307.

    CAS  Google Scholar 

  44. N. W. Schaad, J. B. Jones, and W. Chun Laboratory Guide for the Identification of Plant Pathogenic Bacteria (American Phytopathological Society (APS Press), St. Paul, 2001).

    Google Scholar 

  45. M. Westwood Fruit Growth and Thinning, Temperate-Zone Pomology (WH Frseeman, San Francisco, CA, 1978), pp. 199–201.

    Google Scholar 

  46. J. Holt, N. Krieg, P. Sneath, J. Staley, and S. Williams Bergey’s Manual of Determinative Microbiology (Williams and Wilkins, Maryland, 1994).

    Google Scholar 

  47. S. Bereswill, A. Pahl, P. Bellemann, W. Zeller, and K. Geider (1992). Appl. Environ. Microbiol. 58, (11), 3522–3526.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Zarrouk (1966). Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima, Thesis. University of Paris, France.

  49. B. Wang, Q. Liu, Y. Huang, Y. Yuan, Q. Ma, M. Du, T. Cai, and Y. Cai (2018) Evid. Based Complement. Altern. Med. 2018.

  50. C. Qu, S. Yu, L. Luo, Y. Zhao, and Y. Huang (2013). Chem. Cent. J. 7, (1), 160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Zhang, J. Lu, N. Zhang, D. Zheng, G. Zhang, and L. Teng (2010). Chem. Res. Chin. Univ. 26, (5), 798–802.

    Article  CAS  Google Scholar 

  52. C. Zhao, X. Li, J. Miao, S. Jing, X. Li, L. Huang, and W. Gao (2017). Int. J. Biol. Macromol. 102, 847–856.

    Article  CAS  PubMed  Google Scholar 

  53. A. Bauer, W. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol. 45, (4_ts), 493–496.

    Article  CAS  PubMed  Google Scholar 

  54. M. A. Maksoud, G. S. El-Sayyad, A. Ashour, A. I. El-Batal, M. S. Abd-Elmonem, H. A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Mater. Sci. Eng. C 92, 644–656.

    Article  CAS  Google Scholar 

  55. A. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Particuology 40, 141–151.

    Article  CAS  Google Scholar 

  56. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman (2012). Mater. Lett. 71, 114–116.

    Article  CAS  Google Scholar 

  57. M. A. Ansari, H. M. Khan, A. A. Khan, S. S. Cameotra, and R. Pal (2014). Appl. Nanosci. 4, (7), 859–868.

    Article  CAS  Google Scholar 

  58. D. B. Duncan (1955). Biometrics 11, (1), 1–42.

    Article  Google Scholar 

  59. H. Falkenstein, W. Zeller, and K. Geider (1989). Microbiology 135, (10), 2643–2650.

    Article  CAS  Google Scholar 

  60. J.-B. Lee, T. Hayashi, K. Hayashi, U. Sankawa, M. Maeda, T. Nemoto, and H. Nakanishi (1998). J. Nat. Prod. 61, (9), 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  61. N. Pugh, S. A. Ross, H. N. ElSohly, M. A. ElSohly, and D. S. Pasco (2001). Planta Med. 67, (08), 737–742.

    Article  CAS  PubMed  Google Scholar 

  62. F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, and T.-C. Chu (2007). Mater. Lett. 61, (11–12), 2402–2405.

    Article  CAS  Google Scholar 

  63. M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai (2017). J Clust. Sci. 28, (1), 59–79.

    Article  CAS  Google Scholar 

  64. P. Balashanmugam and P. T. Kalaichelvan (2015). Int. J. Nanomed. 10, (Suppl 1), 87.

    Article  CAS  Google Scholar 

  65. F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li, and W. Zheng (2012). Int. J. Nanomed. 7, 835.

    Article  CAS  Google Scholar 

  66. S. Link and M. A. El-Sayed (2003). Ann. Rev. Phys. Chem. 54, (1), 331–366.

    Article  CAS  Google Scholar 

  67. I. Kouadri, A. Layachi, A. Makhlouf, and H. Satha (2018). Int. J. Polym. Anal. Char. 23, (4), 362–375.

    Article  CAS  Google Scholar 

  68. R. Bryaskova, D. Pencheva, S. Nikolov, and T. Kantardjiev (2011). J. Chem. Biol. 4, (4), 185.

    Article  PubMed  PubMed Central  Google Scholar 

  69. P. Belavi, G. Chavan, L. Naik, R. Somashekar, and R. Kotnala (2012). Mater. Chem. Phys. 132, (1), 138–144.

    Article  CAS  Google Scholar 

  70. A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.

    Article  CAS  Google Scholar 

  71. A. I. El-Batal, H. H. El-Hendawy, and A. H. Faraag (2018). BioTechnologia 98, (3), 225–243.

    Article  CAS  Google Scholar 

  72. B. Sadeghi, M. Sadjadi, and A. Pourahmad (2008). Int. J. Nanosci. Nanotechnol. 4, (1), 3–12.

    Google Scholar 

  73. P. Kanmani, N. Yuvaraj, K. Paari, V. Pattukumar, and V. Arul (2011). Bioresour. Technol. 102, (7), 4827–4833.

    Article  CAS  PubMed  Google Scholar 

  74. Q.-L. Luo, Z.-H. Tang, X.-F. Zhang, Y.-H. Zhong, S.-Z. Yao, L.-S. Wang, C.-W. Lin, and X. Luo (2016). Int. J. Biol. Macromol. 89, 219–227.

    Article  CAS  PubMed  Google Scholar 

  75. R. Sun, J. Fang, A. Goodwin, J. Lawther, and A. Bolton (1998). Carbohydr. Polym. 37, (4), 351–359.

    Article  CAS  Google Scholar 

  76. H. Song, M. He, C. Gu, D. Wei, Y. Liang, J. Yan, and C. Wang (2018). Polymers 10, (3), 292.

    Article  CAS  PubMed Central  Google Scholar 

  77. Z. Zhang, B. Zhao, and L. Hu (1996). J. Solid State Chem. 121, (1), 105–110.

    Article  CAS  Google Scholar 

  78. H. El-Rafie, M. El-Rafie, and M. Zahran (2013). Carbohydr. Polym. 96, (2), 403–410.

    Article  CAS  PubMed  Google Scholar 

  79. A. Dmytryk, A. Saeid, and K. Chojnacka (2014). Sci. World J. 2014, 1–15. https://doi.org/10.1155/2014/356328.

    Article  CAS  Google Scholar 

  80. I. Matai, A. Sachdev, P. Dubey, S. U. Kumar, B. Bhushan, and P. Gopinath (2014). Colloids Surf. B Biointerfaces 115, 359–367.

    Article  CAS  PubMed  Google Scholar 

  81. M. Hildebrand, P. Aldridge, and K. Geider (2006). Mol. Genet. Genomics 275, (3), 310–319.

    Article  CAS  PubMed  Google Scholar 

  82. K. Vrancken, M. Holtappels, H. Schoofs, T. Deckers, and R. Valcke (2013). Microbiology 159, (5), 823–832.

    Article  CAS  PubMed  Google Scholar 

  83. R. Žalnėravičius, A. Paškevičius, K. Mažeika, and A. Jagminas (2018). Appl. Surf. Sci. 435, 141–148.

    Article  CAS  Google Scholar 

  84. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, and C.-M. Che (2006). J. Proteome Res. 5, (4), 916–924.

    Article  CAS  PubMed  Google Scholar 

  85. M.F. Zawrah and S.I. Abd El-Moez (2011). Life Sci. J. 8, (4), 37–44.

    Google Scholar 

  86. S. Kumar, K. Tamura, and M. Nei (2004). Brief. Bioinform. 5, (2), 150–163.

    Article  CAS  PubMed  Google Scholar 

  87. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman (2005). Nanotechnology 16, (10), 2346.

    Article  CAS  PubMed  Google Scholar 

  88. S. Sarkar, A. D. Jana, S. K. Samanta, and G. Mostafa (2007). Polyhedron 26, (15), 4419–4426.

    Article  CAS  Google Scholar 

  89. A.I.M. Allahverdiyev, S. Emrah, B. Malahat, B.U. Cem, K. Cengiz, et al. (2011). Int. J. Nanomedicine 6, 2705–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S. Krishnakumar and V. D. M. Bai (2015). Int. J. Tech Chem. Res. 1, 112–118.

    CAS  Google Scholar 

  91. M. Chahardooli, E. Khodadadi, and E. Khodadadi (2014). Int. J. Biosci. 4, 97–103.

    Google Scholar 

  92. A. Dzimitrowicz, A. Motyka-Pomagruk, P. Cyganowski, W. Babinska, D. Terefinko, P. Jamroz, E. Lojkowska, P. Pohl, and W. Sledz (2018). Nanomaterials 8, 751.

    Article  CAS  PubMed Central  Google Scholar 

  93. E. E. Hafez and S. S. Kabeil (2013). J. Pure Appl. Microbiol. 7, 35–42.

    CAS  Google Scholar 

  94. T. Mohammad and A. Abd El-Rahman (2015). Mycopath 13, (1), 1–6.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Professor at Military Technical College, Egyptian Armed Forces), Dr. Muhamed I. Abdel Maksoud (Lecturer at NCRRT), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, M.S., El-Sayyad, G.S., Saleh, S.S. et al. Spirulina platensis-Polysaccharides Promoted Green Silver Nanoparticles Production Using Gamma Radiation to Suppress the Expansion of Pear Fire Blight-Producing Erwinia amylovora. J Clust Sci 30, 919–935 (2019). https://doi.org/10.1007/s10876-019-01550-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01550-7

Keywords

Navigation