Skip to main content
Log in

Facile Biosynthesis of Tellurium Dioxide Nanoparticles by Streptomyces cyaneus Melanin Pigment and Gamma Radiation for Repressing Some Aspergillus Pathogens and Bacterial Wound Cultures

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Melanin pigment was attracted significant interest as a photo-protecting natural polymer which applied in different fields like nanotechnology, food processing and biomedicine. Streptomyces cyaneus is used for melanin biosynthesis after optimizing its medium requirements. Tellurium dioxide nanoparticles (TeO2 NPs) were biosynthesized by the optimized melanin and gamma rays at room temperature. TeO2 NPs were characterized by UV–Vis., XRD, FTIR, HRTEM, DLS, EDX, and SEM mapping analysis. Antimicrobial activity of TeO2 NPs was tested against some pathogenic fungi and bacteria. The non-controlled free radicals produced from gamma rays were stopped by the natural melanin (stabilizing and capping agent). A proposed reaction mechanism for TeO2 NPs production was investigated. Data received from HRTEM and DLS analysis were calculated the average particles size of the spherical TeO2NPs and were found to be 75.0 nm. TeO2 NPs possesses a promising antifungal potential towards Aspergillus flavus, Aspergillus niger, and Aspergillus fumigatus (30.0, 20.0, and 19.0 mm ZOI, respectively). As well, they have antibacterial potential against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae (25.0, 18.0, and 15.0 mm ZOI, respectively). Based on TeO2 NPs characteristics as an encourage antimicrobial agent, it may be conducted as active ingredients in biomedicine, food processing and packaging and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. Bell and M. H. Wheeler (1986). Annu. Rev. Phytopathol.24, (1), 411–451.

    CAS  Google Scholar 

  2. H. Z. Hill (1992). BioEssays14, (1), 49–56.

    CAS  PubMed  Google Scholar 

  3. H. C. Eisenman and A. Casadevall (2012). Appl. Microbiol. Biotechnol.93, (3), 931–940.

    CAS  PubMed  Google Scholar 

  4. L. Wang, Y. Li, and Y. Li (2018). Int. J. Biol. Macromol.123, 521–530.

    PubMed  Google Scholar 

  5. K. Tarangini and S. Mishra (2013). Res. J. Eng. Sci.2278, 9472.

    Google Scholar 

  6. G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol.29, (11), 2616–2625.

    CAS  Google Scholar 

  7. A. I. El-Batal, et al. (2017). J. Clust. Sci.28, (3), 1083–1112.

    CAS  Google Scholar 

  8. A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B Biol.173, 120–139.

    CAS  Google Scholar 

  9. E. Dadachova, et al. (2007). PLoS ONE2, (5), e457.

    PubMed  PubMed Central  Google Scholar 

  10. A. El-Obeid, et al. (2006). Phytomedicine13, (5), 324–333.

    CAS  PubMed  Google Scholar 

  11. D. C. Montefiori and J. Zhou (1991). Antivir. Res.15, (1), 11–25.

    CAS  PubMed  Google Scholar 

  12. D. C. Rita and S. R. Pombeiro-Sponchiado (2005). Biol. Pharm. Bull.28, (6), 1129–1131.

    Google Scholar 

  13. Y.-C. Hung, et al. (2002). Food Chem.78, (2), 233–240.

    CAS  Google Scholar 

  14. Y. Hung, et al. (2003). Life Sci.72, (9), 1061–1071.

    CAS  PubMed  Google Scholar 

  15. V. Sava, et al. (2003). Food Res. Int.36, (5), 505–511.

    CAS  Google Scholar 

  16. S. Dastager, et al. (2006). Afr. J. Biotechnol. 5, (11), 1131–1134.

    CAS  Google Scholar 

  17. K. F. Chater (1993). Ann. Rev. Microbiol.47, (1), 685–711.

    CAS  Google Scholar 

  18. M. T. Shaaban, S. M. M. El-Sabbagh, and A. Alam (2013). Life Sci. J.10, (1), 1437–1448.

    Google Scholar 

  19. K. Arshak and O. Korostynska (2002). Sensors2, (8), 347–355.

    CAS  Google Scholar 

  20. M. Kastner and H. Fritzsche (1978). Philos. Mag. B37, (2), 199–215.

    CAS  Google Scholar 

  21. L. A. Ba, et al. (2010). Org. Biomol. Chem.8, (19), 4203–4216.

    CAS  PubMed  Google Scholar 

  22. M. M. A. Elsoud, et al. (2018). Biotechnol. Rep.18, e00247.

    Google Scholar 

  23. R. Borghese, et al. (2017). J. Hazard. Mater.324, 31–38.

    CAS  PubMed  Google Scholar 

  24. S. C. Cho, Y. C. Hong, and H. S. Uhm (2006). Chem. Phys. Lett.429, (1–3), 214–218.

    CAS  Google Scholar 

  25. V. Nagarajan and R. Chandiramouli (2014). Comput. Theor. Chem.1049, 20–27.

    CAS  Google Scholar 

  26. H.-Y. Wei, et al. (2009). Mater. Sci. Eng. B164, (1), 51–59.

    CAS  Google Scholar 

  27. S. Hodgson and L. Weng (2000). J. Sol-Gel. Sci. Technol.18, (2), 145–158.

    CAS  Google Scholar 

  28. T. Siciliano, et al. (2014). Sens. Actuators B Chem.201, 138–143.

    CAS  Google Scholar 

  29. D. M. Cruz, et al. (2019). Green Chem.21, 1982–1998.

    Google Scholar 

  30. P. K. Gupta, et al. (2016). Mater. Sci. Eng. B211, 166–172.

    CAS  Google Scholar 

  31. M. A. Elkodous, et al. (2019). Colloids Surf. B Biointerfaces180, 411–428.

    Google Scholar 

  32. M. Abd Elkodous, et al. (2019). J. Clust. Sci.30, (3), 531–540.

    CAS  Google Scholar 

  33. L. Björkhem-Bergman, et al. (2010). PLoS ONE5, (5), e10702.

    PubMed  PubMed Central  Google Scholar 

  34. S. Chowdhury (2012). Environ. Monit. Assess.184, (10), 6087–6137.

    CAS  PubMed  Google Scholar 

  35. C. H. Smith and R. D. Goldman (2012). Can. Fam. Physician58, (12), 1350–1352.

    PubMed  PubMed Central  Google Scholar 

  36. A. I. El-Batal, et al. (2018). Microb. Pathog.118, 159–169.

    CAS  PubMed  Google Scholar 

  37. M. A. Klich (2009). Toxicol. Ind. Health25, (9–10), 657–667.

    PubMed  Google Scholar 

  38. D. W. Denning (1998). Clin. Infect. Dis.26, 781–803.

    CAS  PubMed  Google Scholar 

  39. H. Khalilullah, et al. (2012). Mini Rev. Med. Chem.12, (8), 789–801.

    CAS  PubMed  Google Scholar 

  40. L. B. Rice (2009). Curr. Opin. Microbiol.12, (5), 476–481.

    CAS  PubMed  Google Scholar 

  41. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (4), 947–964.

    CAS  Google Scholar 

  42. A. I. El-Batal, et al. (2018). Int. J. Biol. Macromol.107, 2298–2311.

    CAS  PubMed  Google Scholar 

  43. A. F. El-Baz, et al. (2016). J. Basic Microbiol.56, (5), 531–540.

    CAS  PubMed  Google Scholar 

  44. M. S. Attia, et al. (2019). J. Clust. Sci.30, (4), 919–935.

    CAS  Google Scholar 

  45. A. K. Pal, D. U. Gajjar, and A. R. Vasavada (2013). Med. Mycol.52, (1), 10–18.

    Google Scholar 

  46. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (3), 687–705.

    CAS  Google Scholar 

  47. A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci.29, (6), 1003–1015.

    CAS  Google Scholar 

  48. A. El-Batal, et al. (2013). J. Chem. Pharm. Res.5, (8), 1–15.

    Google Scholar 

  49. A. El-Batal, et al. (2014). Br. J. Pharm. Res.4, (11), 1341.

    Google Scholar 

  50. M. A. Elkodous, et al. (2019). J. Mater. Sci. Mater. Electron.30, (9), 8312–8328.

    CAS  Google Scholar 

  51. M. I. A. A. Maksoud, et al. (2019). J. Mater. Sci. Mater. Electron.30, (5), 4908–4919.

    CAS  Google Scholar 

  52. M. I. A. Abdel Maksoud, et al. (2019). J. Sol-Gel Sci. Technol.90, (3), 631–642.

    CAS  Google Scholar 

  53. M. A. Maksoud, et al. (2018). Mater. Sci. Eng. C92, 644–656.

    Google Scholar 

  54. A. Ashour, et al. (2018). Particuology40, 141–151.

    CAS  Google Scholar 

  55. A. Baraka, et al. (2017). Chem. Pap.71, (11), 2271–2281.

    CAS  Google Scholar 

  56. F. M. Mosallam, et al. (2018). Microb. Pathog.122, 108–116.

    CAS  PubMed  Google Scholar 

  57. M. I. A. A. Maksoud, et al. (2019). Microb. Pathog.127, 144–158.

    CAS  PubMed  Google Scholar 

  58. M. Ghorab, et al. (2016). Br. Biotechnol. J.16, (1), 1–25.

    Google Scholar 

  59. A. I. El-Batal, A.-A. M. Hashem, and N. M. Abdelbaky (2013). SpringerPlus2, (1), 129.

    PubMed  PubMed Central  Google Scholar 

  60. K. Brownlee (1952). JSTOR47, 687–691.

    Google Scholar 

  61. I. Ahmed (2016). Der Pharm. Lett.8, (2), 315–333.

    Google Scholar 

  62. C. A. Ramsden and P. A. Riley (2010). ARKIVOC1, 260–274.

    Google Scholar 

  63. D. Majidi and N. Aksöz (2013). Am. J. Microbiol. Res.1, (1), 1–3.

    CAS  Google Scholar 

  64. K. Haneda, S. Watanabe, and I. Takeda (1973). J. Ferment. Technol.

  65. T. Chevalier, et al. (1999). Plant Physiol.119, (4), 1261–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. A. M. Amal, et al. (2011). Res. J. Chem. Sci.2231, 606X.

    Google Scholar 

  67. I. Ulukus (1984). J. Turk. Phytopathol.13, (2), 53–61.

    CAS  Google Scholar 

  68. J. Spížek and P. Tichý (1995). Folia Microbiol.40, (1), 43–50.

    Google Scholar 

  69. J. L. Doull and L. C. Vining (1990). Appl. Microbiol. Biotechnol.32, (4), 449–454.

    CAS  PubMed  Google Scholar 

  70. P. Jamal, O. K. Saheed, and Z. Alam (2012). Asian J. Biotechnol.4, 1–14.

    Google Scholar 

  71. M. Saastamoinen, M. Eurola, and V. Hietaniemi (2013). J. Agric. Sci. Technol. B3, (2B), 92.

    CAS  Google Scholar 

  72. Y. Lingappa, A. S. Sussman, and I. A. Bernstein (1963). Mycopathologia20, (1), 109–128.

    CAS  Google Scholar 

  73. M. Niederberger and N. Pinna Metal Oxide Nanoparticles in Organic Solvents Synthesis, Formation, Assembly and Application (Springer Science & Business Media, Berlin, 2009).

    Google Scholar 

  74. G. V. Buxton, et al. (1988). J. Phys. Chem. Ref. Data17, (2), 513–886.

    CAS  Google Scholar 

  75. B. I. Kharisov, O. V. Kharissova, and U. O. Méndez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2016).

    Google Scholar 

  76. E. Watson and S. Roy, Selected Specific Rates of Reactions of the Solvated Electron in Alcohols, vol. 42 (National Bureau of Standards, Gaithersburg, 1972).

    Google Scholar 

  77. J. Jortner and R. M. Noyes (1966). J. Phys. Chem.70, (3), 770–774.

    CAS  Google Scholar 

  78. M. Bailey and R. Dixon (1971). Can. J. Chem.49, (17), 2909–2912.

    CAS  Google Scholar 

  79. J.-Y. Xia, et al. (2012). Trans. Nonferrous Met. Soc. China22, (9), 2289–2294.

    CAS  Google Scholar 

  80. M. Patil, et al. (2005). Mater. Lett.59, (19), 2523–2525.

    CAS  Google Scholar 

  81. E. Bartonickova, J. Cihlar, and K. Castkova (2007). Process. Appl. Ceram.1, (1), 2.

    Google Scholar 

  82. N. T. Thanh, N. Maclean, and S. Mahiddine (2014). Chem. Rev.114, (15), 7610–7630.

    CAS  PubMed  Google Scholar 

  83. D. Ellis and D. Griffiths (1974). Can. J. Microbiol.20, (10), 1379–1386.

    CAS  Google Scholar 

  84. V. Vasanthabharathi, R. Lakshminarayanan, and S. Jayalakshmi (2011). Afr. J. Biotechnol.10, (54), 11224.

    CAS  Google Scholar 

  85. A. L. Gajengi, T. Sasaki, and B. M. Bhanage (2017). Adv. Powder Technol.28, (4), 1185–1192.

    CAS  Google Scholar 

  86. S. Tanveer, et al. (2014). J. Chin. Chem. Soc.61, (5), 525–532.

    CAS  Google Scholar 

  87. N. Aydin, et al. (2017). Biomed. Res.28, (7), 3300–3304.

    CAS  Google Scholar 

  88. T. Jin and Y. He (2011). J. Nanopart. Res.13, (12), 6877–6885.

    CAS  Google Scholar 

  89. Y. He, et al. (2016). J. Nanobiotechnol.14, (1), 54.

    Google Scholar 

  90. Z.-X. Tang and B.-F. Lv (2014). Braz. J. Chem. Eng.31, (3), 591–601.

    Google Scholar 

  91. L. Huang, et al. (2005). Chin. Sci. Bull.50, (6), 514–519.

    CAS  Google Scholar 

  92. L. Huang, et al. (2005). J. Inorg. Biochem.99, (5), 986–993.

    CAS  PubMed  Google Scholar 

  93. O. Yamamoto, et al. (2001). J. Ceram. Soc. Jpn.109, (1268), 363–365.

    CAS  Google Scholar 

  94. Y.-J. Lin, et al. (2009). J. Mater. Sci. Mater. Med.20, (2), 591–595.

    CAS  PubMed  Google Scholar 

  95. O. Yamamoto, et al. (2010). Mater. Sci. Eng. B173, (1), 208–212.

    CAS  Google Scholar 

  96. J. Pi, et al. (2013). Bioorg. Med. Chem. Lett.23, (23), 6296–6303.

    CAS  PubMed  Google Scholar 

  97. Z. H. Lin, et al. (2012). Chem. Asian J.7, (5), 930–934.

    CAS  PubMed  Google Scholar 

  98. E. Zonaro, et al. (2015). Front. Microbiol.6, 584.

    PubMed  PubMed Central  Google Scholar 

  99. M. Arakha, et al. (2015). Sci. Rep.5, 14813.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. B. Zare, et al. (2012). Mater. Res. Bull.47, (11), 3719–3725.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gharieb S. El-Sayyad or Ahmed I. El-Batal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayyad, G.S., Mosallam, F.M., El-Sayed, S.S. et al. Facile Biosynthesis of Tellurium Dioxide Nanoparticles by Streptomyces cyaneus Melanin Pigment and Gamma Radiation for Repressing Some Aspergillus Pathogens and Bacterial Wound Cultures. J Clust Sci 31, 147–159 (2020). https://doi.org/10.1007/s10876-019-01629-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01629-1

Keywords

Navigation