Skip to main content

Advertisement

Log in

Poly(Styrene Sulfonate)/Poly(Allylamine Hydrochloride) Encapsulation of TiO2 Nanoparticles Boosts Their Toxic and Repellent Activity Against Zika Virus Mosquito Vectors

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Green fabricated nanoparticles often need to be encapsulated and stabilized, to ensure uniform dispersion in the aquatic environment and relevant larvicidal activity over time. However, recent research showed that nanoencapsulation processes led to a reduction of nanoparticle larvicidal efficacy. We used an extract of Argemone mexicana to reduce TiO2 nanoparticles, which were then capped with PSS/PAH (poly(styrene sulfonate)/poly(allylamine hydrochloride)). The toxic and repellent potential of the nanoparticles were compared to elucidate their potential effects against the Zika virus vector Aedes aegypti. Nanoparticles were characterized by biophysical methods including UV–Vis, EDX and FTIR spectroscopy, SEM, TEM, XRD and DLS analyses. In larvicidal and pupicidal experiments, TiO2 nanoparticles achieved LC90 values from 41.648 (larva I), to 71.74 ppm (pupa). Nanoencapsulated TiO2 achieved LC90 values from 39.16 (I), to 69.12 ppm (pupa). In adulticidal experiments, LC90 of TiO2 nanoparticles on Ae. aegypti was 10.31 ppm, while LC90 of nanoencapsulated TiO2 was 9.54 ppm. At 10 ppm, the repellency towards Ae. aegypti was 80.43% for TiO2 nanoparticles, and 88.04% for nanoencapsulated TiO2. This research firstly highlighted the promising potential of PSS/PAH encapsulation, leading to the production of highly effective titania nanostructures, if compared to titania nanoparticles synthesized with eco-friendly routes without further stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. S. Abbott (1925). A method of computing the effectiveness of insecticides. J. Econ. Entomol. 18:267–269.

    Article  Google Scholar 

  2. Z. Abbas, J. P. Holmberg, A. K. Hellstrom, M. Hagstrom, J. Bergenhol, M. Hassellov and Ahlberg (2011). Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles. Colloids Surf. A. 384, 254–261.

    Article  CAS  Google Scholar 

  3. D. Amerasan, K. Murugan, K. Kovendan and P. Mahesh Kumar (2012). Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol. Res. 111, 1953–1964.

    Article  Google Scholar 

  4. A. S. Apu, S. H. Bhuyan and M. Matin (2012). Phytochemical analysis and bioactivities of Argemone mexicana Linn. leaves. Pharmacol.OnLine. 3, 16–23.

    CAS  Google Scholar 

  5. S. Arokiyaraj, V. D. Kumar, V. Elakya, T. S. Kamala, S. K. Park, M. Ragam, M. Saravanan, M. Bououdina, M. V. Arasu, K. Kovendan and S. Vincent (2011) Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control, Environ. Sci. Pollut. Res. doi:10.1007/s11356-015-4148-9.

  6. R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, S. Kadaikunnan, N. S. Alharbi, P. Vijayan, U. Muthukumaran and G. Benelli (2016). Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv. 6, 96573–96583.

    Article  Google Scholar 

  7. R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, U. Muthukumaran and G. Benelli (2017a). Single-step biofabrication of silver nanocristals using Naregamia alata: a cost effective and eco-friendly control tool in the fight against malaria, Zika virus and St. Louis encephalitis mosquito vectors. J. Clust. Sci. 28, 179–203.

    Article  CAS  Google Scholar 

  8. R. M. S. T. Azarudeen, M. Govindarajan, M. M. AlShebly, F. S. AlQahtani, A. Amsath and G. Benelli (2017b). One pot green synthesis of colloidal silver nanocrystals using the Ventilago maderaspatana leaf extract: acute toxicity on malaria, Zika virus and filariasis mosquito vectors. J. Clust. Sci. 28, 369–392.

    Article  Google Scholar 

  9. B. Banumathi, B. Vaseeharan, R. Periyannan, N. M. Prabhu, P. Ramasamy, K. Murugan, A. Canale and G. Benelli (2017). Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet. Parasitol. 244, 102–110.

    Article  CAS  Google Scholar 

  10. G. Benelli (2015a). Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801–2805.

    Article  Google Scholar 

  11. G. Benelli (2015b). Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol. Res. 114, 3201–3212.

    Article  Google Scholar 

  12. G. Benelli (2016a). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115, 23–34.

    Article  Google Scholar 

  13. G. Benelli (2016b). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb. Technol. 95, 58–68.

    Article  CAS  Google Scholar 

  14. G. Benelli and H. Mehlhorn (2016). Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol. Res. 115, 1747–1754.

    Article  Google Scholar 

  15. G. Benelli (2017). Commentary: data analysis in bionanoscience issues to watch for. J. Clust. Sci. doi:10.1007/s10876-016-1143-3.

    Google Scholar 

  16. G. Benelli and J. Beier (2017). Current vector control challenges in the fight against malaria. Acta Trop. 174, 91–96.

    Article  Google Scholar 

  17. G. Benelli and C. M. Lukehart (2017). Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J. Clust. Sci. 28, 1–2.

    Article  CAS  Google Scholar 

  18. G. Benelli and D. Romano (2017). Mosquito vectors of Zika virus. Entomol. Gen. doi: 10.1127/entomologia/2017/0496.

    Google Scholar 

  19. G. Benelli, A. Canale, C. Toniolo, A. Higuchi, K. Murugan, R Pavela and M. Nicoletti (2017a). Neem (Azadirachta indica): towards the ideal insecticide?. Nat. Prod. Res. 31, 369–386.

    Article  CAS  Google Scholar 

  20. G. Benelli, F. Maggi, D. Romano, C. Stefanini, B. Vaseeharan, S. Kumar, A. Higuchi, A. A. Alarfaj, H. Mehlhorn and A. Canale (2017b). Nanoparticles as effective acaricides against ticks—a review. Ticks Tick-borne Dis. doi:10.1016/j.ttbdis.2017.08.004.

    Google Scholar 

  21. G. Benelli, R. Pavela, F. Maggi, R. Petrelli and M. Nicoletti (2017c). Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J. Clust. Sci. 28, 3–10.

    Article  CAS  Google Scholar 

  22. G. Benelli, F. Maggi, R. Pavela, K. Murugan, M. Govindarajan, B. Vaseeharan, R. Petrelli, L. Cappellacci, S. Kumar, A. Hofer, M. R. Youssefi, A. A. Alarfaj, J. S. Hwang and A. Higuchi (2017d). Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects. Environ. Sci. Pollut. Res. doi:10.1007/s11356-017-9752-4.

    Google Scholar 

  23. I. Bhattacharjee, S. K. Chatterjee and G. Chandra (2010). Isolation and identification of antibacterial components in seed extracts of Argemone mexicana L. (Papaveraceae). Asian Pac. J. Trop. Med. 3, 547–551.

    Article  CAS  Google Scholar 

  24. P. Y. K. Cheung and B. D. Hammock (1985). Micro-lipid droplet encapsulation of Bacillus thuringiensis subsp. israelensis b-endotoxin for control of mosquito larvae. Appl. Environ. Microbiol. 50, 984–988.

    CAS  Google Scholar 

  25. W. K. Ding and N. P. Shah (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74, 100–107.

    Article  Google Scholar 

  26. V. K. Dua, A. C. Pandey and A. P. Dash (2010). Adulticidal activity of essential oil of Lantana camara leaves against mosquitoes. Indian J. Med. Res. 131, 434–439.

    CAS  Google Scholar 

  27. E. S. Edwin, P. Vasantha-Srinivasan, S. Senthil-Nathan, A. Thanigaivel et al. (2016). Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 163, 167–178.

    Article  CAS  Google Scholar 

  28. T. A. Egerton and I. R. Tooley (2011). Physical characterization of titanium dioxide nanoparticles. Int. J. Cosmet. Sci. doi:10.1111/ics.12113.

    Google Scholar 

  29. J. Fatisson, R. F. Domingos, K. J. Wilkinson and N. Tufenkji (2009). Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25, 6062–6069.

    Article  CAS  Google Scholar 

  30. D. J. Finney, Probit Analysis (Cambridge University, London, 1971), pp. 68–78.

    Google Scholar 

  31. D. S. Goodsell, Bionanotechnology: Lessons From Nature (Wiley, Hoboken, 2004).

    Book  Google Scholar 

  32. C. A. Guerra, R. W. Snow and S. I. Hay (2006). A global assessment of closed forests, deforestation and malaria risk. Ann. Trop. Med. Parasitol. 100, 189–204.

    Article  CAS  Google Scholar 

  33. M. Govindarajan (2010). Larvicidal and repellent activities of Sida acuta Burm. F. (Family: Malvaceae) against three important vector mosquitoes. Asian Pac. J. Trop. Biomed. 3, 691–695.

    Article  Google Scholar 

  34. M. Govindarajan and R. Sivakumar (2011). Mosquito adulticidal and repellent activities of botanical extracts against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 941–947.

    Article  Google Scholar 

  35. J. Hemingway and H. Ranson (2000). Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391.

    Article  CAS  Google Scholar 

  36. A. B. Hadapad, R. S. Hire, N. Vijayalakshmi and T. K. Dongre (2011). Sustained-release biopolymer based formulations for Bacillus sphaericus Neide ISPC-8. J. Pest Sci. doi:10.1007/s10340-010-0347-9.

    Google Scholar 

  37. W. C. Hsieh, C. P. Chang and Y. L. Gao (2006). Controlled release properties of chitosan encapsulated volatile Citronella oil microcapsules by thermal treatments. Colloid Surf. B Biointerfaces 53, 209–214.

    Article  CAS  Google Scholar 

  38. G. Ji, P. Dwivedi, S. Sundaram and R. Prakash (2015). Aqueous extract of Argemone mexicana roots for effective protection of mild steel in an HCl environment. Res. Chem. Intermed. 42, 439–459.

    Article  Google Scholar 

  39. K. Kovendan, K. Murugan, P. Mahesh Kumar, P. Thiyagarajan and S. J. William (2012). Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol. Res. 112, 1205–1219.

    Article  Google Scholar 

  40. R. Kumar, M. Sharon and A. K. Choudhary (2010). Nanotechnology in agricultural diseases and food safety. J. Phytol. 2, 83–92.

    Google Scholar 

  41. P. Madhiyazhagan, K. Murugan, A. Naresh Kumar, T. Nataraj, D. Dinesh, C. Panneerselvam, J. Subramaniam, P. Mahesh Kumar, U. Suresh, M. Roni, M. Nicoletti, A. A. Alarfaj, A. Higuchi, M. A. Munusamy and G. Benelli (2015). Sargassum muticum-synthetized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. doi:10.1007/s00436-015-4671-0.

    Google Scholar 

  42. W. Miao, B. Zhu, X. Xiao, Y. Li, N. B. Dirbaba, B. Zhou and H. Wu (2015). Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat. Toxicol. 161, 117–126.

    Article  CAS  Google Scholar 

  43. I. Mourtzinos, F. Salta, K. Yannakopoulou, A. Chiou and V. T. Karathanos (2007). Encapsulation of olive leaf extract in betacyclodextrin. J. Agric. Food. Chem. 55, 8088–8894.

    Article  CAS  Google Scholar 

  44. W. E. G. Muller, S. Engel, X. Wang, S. E. Wolf and W.Tremel (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly (silicate) after transformation with silicate in-a gene. Biomaterials. 29, 771–779.

    Article  Google Scholar 

  45. K. Murugan, G. Benelli, A. Suganya, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. S. Hwang, P. Mahesh Kumar, J. Subramaniam and U. Suresh (2015a). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol. Res. 114, 2243–2253.

    Article  Google Scholar 

  46. K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J. S. Hwang, U. Suresh and P. Madhiyazhagan (2015b). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 153, 129–138.

    Article  CAS  Google Scholar 

  47. K. Murugan, D. Dinesh, K. Kavithaa, M. Paulpandi, T. Ponraj, M. S. Alsalhi, S. Devanesan, J. Subramaniam, R. Rajaganesh, H. Wei, K. Suresh, M. Nicoletti and G. Benelli (2016). Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol. Res. 115, 1085–1096.

    Article  Google Scholar 

  48. K. Murugan, A. Jaganathan, U. Suresh, R. Rajaganesh, S. Jayasanthini, A. Higuchi, S. Kumar and G. Benelli (2017). Towards bio-encapsulation of chitosan-silver nanocomplex? Impact on malaria mosquito vectors, human breast adenocarcinoma cells (MCF-7) and behavioral traits of non-target fishes. J. Clust. Sci. 28, 529–550.

    Article  CAS  Google Scholar 

  49. M. N. Naqqash, A. Gokce, A. Bakhsh and M. Salim (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 115, 1363–1373.

    Article  Google Scholar 

  50. J. D. Patel, U. Panchal, M. Panchal and B. A. Makwana (2015). Green synthesis of silver nanoparticles usingthe leaf extract and their microbial activity. J. Adv. Chem. Sci. 1, 82–85.

    Google Scholar 

  51. A. Patri, T. Umbreit, J. Zheng, K. Nagashima, P. Goering, S. Francke-Carroll, E. Gordon, J. Weaver, T. Miller, N. Sadrieh, S. McNeil and M. Stratmeyer (2009). Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J. Appl. Toxicol. 29, 662–672.

    Article  CAS  Google Scholar 

  52. R. Pavela (2015a). Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops Prod. 76, 174–187.

    Article  CAS  Google Scholar 

  53. R. Pavela (2015b). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. doi: 10.1007/s00436-015-4614-9.

    Google Scholar 

  54. R. Pavela and G. Benelli (2016a). Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors – a review. Exp. Parasitol. 167:103–108.

    Article  Google Scholar 

  55. V. Pradeepa, S. Senthil-Nathan, S. Sathish-Narayanan, S. Selin-Rani, P. Vasantha-Srinivasan, A. Thanigaivel et al. (2016). Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi (Culicidae: Diptera). Pest Biochem. Physiol. 134, 84–93.

    Article  CAS  Google Scholar 

  56. S. P. Priya, S. Sakinah, K. Sharmilah, R. A. Hamat, Z. Sekawi, A. Higuchi, M. P. Ling, S. A. Nordin, G. Benelli and S. S. Kumar (2017). Leptospirosis: molecular trial path and immunopathogenesis correlated with malaria and dengue mimetic hemorrhagic infections. Acta Trop. 176, 206–223.

    Article  CAS  Google Scholar 

  57. R. Rajan, K. Chandran, S.L. Harper, S.I. Yun and P.T. Kalaichelvan (2015). Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crops Prod. 70: 356–373.

    Article  CAS  Google Scholar 

  58. A. Reegan, M. Rajiv Gandhi and M. G. Paulraj (2014). Ovicidal and oviposition deterrent activities of medicinal plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say mosquitoes (Diptera: Culicidae). Osong Public Health Res. Perspect. 6, 64–69.

    Article  Google Scholar 

  59. A. Reegan, R. Vinoth Kannan, M. G. Paulraj and S. Ignacimuthu (2014). Synergistic effects of essential oil-based cream formulations against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). J. Asia Pac. Entomol. 17, 327–331.

    Article  CAS  Google Scholar 

  60. J. Rubio-Piña and F. Vázquez-Flota (2013). Pharmaceutical applications of the benzylisoquinoline alkaloids from Argemone mexicana L. Curr. Top. Med. Chem. 13, 2200–2207.

    Article  Google Scholar 

  61. R. B. Salunkhe, S. V. Patil, C. D. Patil and B. K. Salunke (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol. Res. 109, 823–831.

    Article  Google Scholar 

  62. G. Scrinis and K. Lyons (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agrifood systems. Int. J. Sociol. Food Agric. 15, 1–23.

    Google Scholar 

  63. S. Senthil-Nathan (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteron insects. Front. Physiol. 359, 1–17.

    Google Scholar 

  64. S. Senthil-Nathan, A Review of Biopesticides and Their Mode of Action against Insect Pests, In: Environmental Sustainability-Role of Green Technologies (Springer, Berlin, 2015), pp. 49–63.

  65. S. Sivapriyajothi, P. Mahesh Kumar, K. Kovendan and J. Subramaniam (2014). Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J. Entomol. Acarol. Res. 46, 1787.

    Article  Google Scholar 

  66. Stuart, B.H., 2002. Polymer Analysis. John Wiley & Sons, United Kingdom.

    Google Scholar 

  67. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, P. M. Kumar, D. Dinesh, B. Chandramohan, U. Suresh, M. Nicoletti, A. Higuchi, J. S. Hwang, S. Kumar, A. A. Alarfaj, M. A. Munusamy, R. H. Messing and G. Benelli (2016a). Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ. Sci. Pollut. Res. 22, 20067–20083. doi:10.1007/s11356-015-5253-5

    Article  Google Scholar 

  68. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. Mahesh, B. Chandramohan, U. Suresh, R. Rajaganesh, M. Saleh Alsalhi, S. Devanesan, M. Nicoletti, A. Canale and G. Benelli (2016b). Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Poll. Res. 23, 7543–7558. doi:10.1007/s11356-015-6007-0.

    Article  CAS  Google Scholar 

  69. A. Suganya, K. Murugan, K. Kovendan, P. Mahesh and J. S. Hwang (2013). Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol. Res. 112, 1385–1397.

    Article  Google Scholar 

  70. V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni et al. (2015). Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res. 114, 3315–3325.

    Article  Google Scholar 

  71. U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. R. Barnard and C. Panneerselvam (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562.

    Article  Google Scholar 

  72. J. C. Tarafdar, S. Sharma and R. Raliya (2013). Nanotechnology: interdisciplinary science of applications. Afr. J. Biotechnol. 12, 219–226.

    Article  Google Scholar 

  73. A. Thanigaivel, P. Vasantha-Srinivasan, S. Senthil-Nathan, E. S. Edwin, A. Ponsankar, M. Chellappandian, S. Selin-Rani, J. Lija-Escaline and K. Kalaivani (2017). Impact of Terminalia chebula Retz. Against Aedesaegypti L. and non-target aquatic predatory insects. Ecotoxicol. Environ. Saf. 137, 210–217.

    Article  CAS  Google Scholar 

  74. S. Varun, S. Sellappa, M. Rafiqkhan and S. Vijayakumar (2015). Green synthesis of gold nanoparticles using Argemone mexicana L. leaf extract and its characterization. Int. J. Pharm. Sci. Rev. Res. 32, 42–44.

    CAS  Google Scholar 

  75. R. Vidhyalakshmi, R. Bhakyaraj and R. S. Subhasree (2009). Encapsulation: the future of probiotics—a review. Adv. Biol. Res. 3, 96–103.

    CAS  Google Scholar 

  76. K. Vikram, B. N. Nagpala, V. Pande, A. Srivastava, R. Saxena, and A. Anvikar (2016). An epidemiological study of dengue in Delhi, India. Acta Trop. 153, 21–27.

    Article  Google Scholar 

  77. V. Vogel, Text book of practical organic chemistry (The English Language Book Society and Longman, London, 1978), pp. 1368.

    Google Scholar 

  78. W. Ward and G. Benelli (2017). Avian and simian malaria: do they have a cancer connection? Parasitol. Res. 116, 839–845.

    Article  Google Scholar 

  79. T. C. Weeraratne, M. D. B. Perera and M. Mansoor (2013). Prevalence and breeding habitats of the dengue vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in the semi-urban areas of two different Climatic zones in Sri Lanka. Int. J. Trop. Insect Sci. 9, 1–11.

    Google Scholar 

  80. J. Whitehorn and J. Farrar. (2010). Dengue. Br. Med. Bull. 95, 161–173.

    Article  Google Scholar 

  81. WHO, Dengue and Severe Dengue. Factsheet no. 117 (World Health Organization, Geneva, 2015).

Download references

Acknowledgements

The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0062. Dr. Anitha Jaganathan is grateful to the University Grant Commission (New Delhi, India), Project No. PDFSS-2014-15-SC-TAM-10125.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kadarkarai Murugan or Giovanni Benelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Jaganathan, A., Rajaganesh, R. et al. Poly(Styrene Sulfonate)/Poly(Allylamine Hydrochloride) Encapsulation of TiO2 Nanoparticles Boosts Their Toxic and Repellent Activity Against Zika Virus Mosquito Vectors. J Clust Sci 29, 27–39 (2018). https://doi.org/10.1007/s10876-017-1300-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1300-3

Keywords

Navigation