Skip to main content

Advertisement

Log in

Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes are insect vectors responsible for the transmission of parasitic and viral infections to millions of people worldwide, with substantial morbidity and mortality. Infections transmitted by mosquitoes include malaria, yellow fever, chikungunya, filariasis and other arboviruses. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The adulticidal activities of crude hexane, benzene, ethyl acetate, acetone and methanol leaf extracts of Acalypha alnifolia were assayed for their toxicity against three important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract were observed. The LC50 values of A. alnifolia leaf extracts against adulticidal activity of (hexane, benzene, ethyl acetate, acetone and methanol) A. aegypti, A. stephensi and C. quinquefasciatus were the following: A. aegypti values were 371.87, 342.97, 320.17, 300.86 and 279.75 ppm; A. stephensi values were 358.35, 336.64, 306.10, 293.01 and 274.76 ppm; C. quinquefasciatus values were 383.59, 354.13, 327.74, 314.33 and 291.71 ppm. The results of the repellent activity of hexane, benzene, ethyl acetate, acetone and methanol extract of A. alnifolia plant at three different concentrations of 1.0, 3.0, and 5.0 mg/cm2 were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, this plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100 % with methanol extract of A. alnifolia was exerted at 125 and 300 ppm. The larval density was decreased after the treatment of plant extracts at the breeding sites (water bodies system) of vector mosquitoes, and hence, these plant extracts are suitable alternatives of synthetic insecticides for mosquito vector management.These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This study provides first report on the mosquito ovicidal, repellent and adulticidal activities of these plant extracts against mosquito vector species from India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99(4):478–490

    Article  PubMed  Google Scholar 

  • Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang JS (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi Parasitol Res 111:1953–1964

  • Amusan AA, Idowu AB, Arowolo FS (2005) Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanzan Health Res Bull 7(3):174–178

    PubMed  CAS  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan RK (2000) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol 71:267–271

    Article  CAS  Google Scholar 

  • Ascher KRS, Schmutterer H, Zebitz CPW, Naqvi SNH (1995) The Persian lilac or chinaberry tree: Melia azedarach L. In: Schmutterer H (ed) The Neem Tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. Weinheim, VCH, pp 605–642

    Google Scholar 

  • Balakrishnan VP, Prema Ravindran KC, Philip Robinson J (2009) Ethnobotanical studies among villagers from Dharapuram Taluk, Tamil Nadu, India. Global J Pharmacol 3(1):8–14

    Google Scholar 

  • Barnard DR, Posey KH, Smith D, Shreck CE (1998) Mosquito density, biting cycle, and cage size effects on repellent test. Med Vet Entomol 12:39–45

    Article  PubMed  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in north-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Burfield T, Reekie S (2005) Mosquitoes, malaria and essential oils. Int J Aromather 15(30):41

    Google Scholar 

  • Choochote W, Chaithong U, Kamsuk K, Rattanachanpichai E, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006) Adulticidal activity against Stegomyia aegypti (Diptera: culicidae) of three Piper spp. Rev Inst Med tro S Paulo 48(1):33–37

    Google Scholar 

  • Choi WS, Park BS, Ku SK, Lee SE (2002) Repellent activities of essential oils and monoterpenes against Culex pipiens pallens. J Am Mosq Control Assoc 18:348–351

    PubMed  CAS  Google Scholar 

  • Curtis CF (1990) Appropriate Technology in vector control. CRC, Boca Raton, FL. pp 125–128

  • Das NG, Nath DR, Baruah I, Talukdar PK, Das SG (1999) Field evaluation of herbal mosquito repellents. J Commun Dis 31(4):241–245

    PubMed  CAS  Google Scholar 

  • Das NG, Nath DR, Baruah I, Talukdar PK, Das SG (2000) Field evaluation of herbal mosquito repellents. J Commun Dis 31(4):241–245

    Google Scholar 

  • Datta S, Ghosh A, Sarkar S, Deka P, Choudhuri T, Pal P, Kar PK (2010) Herbal mosquito repellents: a review. Int J Pharm Sci Bio 1(4):195–202

    Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    Article  PubMed  CAS  Google Scholar 

  • Dhiman CR, Pahwa S, Dhillon GPS, Dash PA (2010) Climate change and threat of vector-borne diseases in India: are we prepared? Parasitol Res 106:763–773

    Article  PubMed  Google Scholar 

  • Dua VK, Alam MF, Pandey AC, Rai S, Chopra AK, Kaul VK (2008) Insecticidal activity of Valeriana jatamansi (Verbenaceae) against mosquitoes. J Am Mosq Control Assoc 24:315–318

    Article  PubMed  CAS  Google Scholar 

  • Dua VK, Pandey AC, Dash AP (2010) Adulticidal activity of essential oil of Lantana camara leaves against mosquitoes. Indian J Med Res 131:434–439

    PubMed  CAS  Google Scholar 

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. New Engl J Med 13:347–418

    Google Scholar 

  • Geetha I, Paily KP, Manonmani AM (2011) Mosquito adulticidal activity of a biosurfactant produced by Bacillus subtilis subsp. subtilis. Pest Manag Sci 68:1447–1450

    Article  Google Scholar 

  • Garg JM (2009) Information Description = {{en|1 = ''Acalypha capitata'' Willd. (syn. “Acalypha alnifolia” Klein ex Willd.) in Keesara, Rangareddy district, Andhra Pradesh, India

  • Gopalan SS, Das A (2009) Household economic impact of an emerging disease in terms of catastrophic out-of-pocket health care expenditure and loss of productivity: investigation of an outbreak of chikungunya in Orissa, India. J Vector Borne Dis 46:57–64

    PubMed  Google Scholar 

  • Govindachari TR, Suresh G, Krishna Kumari GN, Rajamannar T, Partho PD (1999) Nymania-3. A bioactive triterpenoid from Dysoxylum malabaricum. Fitoterapia 70:83–86

    Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691–695

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1(1):43–48

    Article  Google Scholar 

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  • Halim ASA (2008) Efficacy of Zingiber officinale on third stage larvae and adult fecundity of Musca domestica and Anopheles pharoensis. J Egypt Soc Parasitol 38:385–392

    PubMed  Google Scholar 

  • Hyoung KD, Kim S, Chang KS, Young JA (2002) Repellent activity of constituents indentified in Foeniculum vulgare fruit against Aedes aegypti (Diptera: Culicidae). J Agric Food Chem 50(24):6993–6996

    Article  Google Scholar 

  • Jeyabalan D, Arul N, Thangamathi P (2003) Studies on effects of Pelargonium citrosa leaf extracts on malarial vector Anopheles stephensi Liston. Biores Technol 89:185–189

    Article  CAS  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Kovendan K, Murugan K, Thiyagarajan P, Naresh Kumar, Abirami D, Asaikkutti A (2009) Impact of climate change on the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). In: International Congress of Global Warming on Biodiversity of Insects: Management and Conservation, 9–12 February 2009, Tamil Nadu, India, p 62

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012a) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012b) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Naresh Kumar A, Vincent S, Hwang JS (2012c) Bio-efficacy of larvicidal and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:669–678

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S, Barnard DR (2012d) Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110:2105–2115

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Prasanna Kumar K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S (2012e) Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis against the mosquito vectors. Parasitol Res 111:531–544

    Article  PubMed  Google Scholar 

  • Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012f) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111:1025–1035

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Shanthakumar SP, Vincent S, Hwang JS (2012g) Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Parasitol Res Parasitol Res 111:1481–1490

    Article  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012h) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pacific J Trop Med 412–420

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012i) Efficacy of larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and Metarhizium anisopliae (Metsch.) against Culex quinquefasciatus Say. (Diptera: Culicidae). J Biopest 5:170–176

    Google Scholar 

  • Kuppusamy C, Murugan K (2008) Oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Entomol Res 38:119–125

    Article  Google Scholar 

  • Liu SQ, Shi JJ, Cao H, Jia FB, Liu XQ, Shi GL (2000) In Entomology in China in 21st century, Proceedings of Conference of Chinese Entomological Society. In: Dianmo L (ed) Survey of pesticidal component in plant. Science & Technique Press, Beijing, China, pp 1098–1104

    Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amerasan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110:2541–2550

    Article  PubMed  Google Scholar 

  • Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava CN (2007) Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol Res 37:153–156

    Article  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Abdel-Ghaffar F, Al-Rasheid K (2010) It isn't nice to have lice-a natural neem based shampoo stops them! Nat Medicine, South Africa

    Google Scholar 

  • Mittal PK, Adak T, Subbarao SK (2005) Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of Anopheles stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci 89:442–443

    Google Scholar 

  • Mullai K, Jebanesan A (2007) Bioefficacy of the leaf extract of Cucumis pubescens Willd (Cucurbitaceae) against larval mosquitoes. Bullet of Bio Sci 4:35–37

    Google Scholar 

  • Mullai K, Jebanesan A, Pushpanathan T (2008) Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (Cucurbitaceae) against the malarial vector, Anopheles stephensi Liston (Diptera culicidae). Eur Rev Med Pharmacol Sci 12(1):1–7

    PubMed  CAS  Google Scholar 

  • Murugan K, Mahesh Kumar P, Kovendan K, Amerasan D, Subramaniam J (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-012-3021-8

  • Muthukrishnan J, Puspalatha E (2001) Effects of plant extracts on fecundity and fertility of mosquitoes. J Appl Entomol 125:31–35

    Article  Google Scholar 

  • Nagpal BN, Srivastava A, Valecha N, Sharma VP (2001) Repellent action of neem cream against Anopheles culicifacies and Culex quinquefasciatus. Curr Sci 80:1270

    CAS  Google Scholar 

  • National Institute of Communicable Diseases (NICD) (1990) Proceedings of the National Seminar on operation research on vector control in filariasis. New Delhi, India

  • National Vector Borne Disease Control Programme (NVBDCP) (2011a) Dengue cases and deaths in the country since 2007. http://nvbdcp.gov.in/den-cd.html. Accessed 23 Nov 2011

  • Nathan SS, Kalaivani K, Murugan K, Chung PG (2005) Effects of neem limonoids on malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    Article  PubMed  CAS  Google Scholar 

  • Oz E, Cinbilgel I, Cetin H (2007) Fumigant toxicity of essential oil from Mentha longifolia L. (Lamiaceae) against the house mosquito, Culex pipiens (Diptera: Culicidae). The 4th European Mosquito Control Association Workshop, Prague, Czech Republic, September 11–14

  • Panneerselvam C, Murugan K (2012) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-012-3185-2

  • Phukan S, Kalita MC (2005) Phytopesticidal and repellent efficacy of Litsea salicifolia (Lauraceae) against Aedes aegypti and Culex quinquefasciatus. Indian J Exp Biol 43:472–474

    PubMed  CAS  Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Radhika W, Ankita R, Jasdeep K. S, Roopa S, Naim W, Sarita K (2012) Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti. Asian Pacific J Trop Biomed 152–155

  • Rajkumar S, Jebanesan A (2002) Knocking down and killing effect of Solanum aerianthum D. Don leaf extract against mosquito Culex quinquefasciatus say. Environ Ecol 20(4):778–780

    Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340

    Article  PubMed  CAS  Google Scholar 

  • Rao DR, Reuben R, Nagasampagi BA (1995) Development of combined use of Neem (Azadirachta indica) and water management for the control of culicine mosquitoes in rice fields. Med Vet Entomol 9:25–33

    Article  PubMed  CAS  Google Scholar 

  • Sharma VP, Ansari MA (1994) Personal protection from mosquitoes (Diptera: Culicidae) by burning neem oil in kerosene. J Med Entomol 31(3):505–507

    PubMed  CAS  Google Scholar 

  • Sharma SK, Upadhyay AK, Haque MA, Tyagi PK, Raghavendra K, Dash AP (2010) Wash-resistance and field evaluation of alphacypermethrin treated long-lasting insecticidal net (Interceptor) against malaria vectors Anopheles culicifacies and Anopheles fluviatilis in a tribal area of Orissa, India. Acta Trop 116(1):24–30

    Article  PubMed  CAS  Google Scholar 

  • Service MW (1983) Management of vectors. In: Youdeowei A, Service MW (eds) Pest and vectors management in Tropics. p. 265–280

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  Google Scholar 

  • Su T, Mulla MS (1998) Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Cont Assoc 14:204–209

    CAS  Google Scholar 

  • Tyagi BK, Ramnath T, Shahi AK (1994) Evaluation of repellency effect of Tagetus minuta (Family: Compositae) against the vector mosquitoes Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. Int Pest Contr 39:48

  • Venkatachalam MR, Jebanesan A (2001) Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extract against Aedes aegypti. Bioresour Tech 76(3):287–288

    Article  CAS  Google Scholar 

  • Yang YC, Lee EH, Lee HS, Lee DK, Ahn YJ (2004) Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J Am Mosq Control Assoc 20(2):146–149

    PubMed  Google Scholar 

  • Yang T, Liang L, Guiming F, Zhong S, Ding G, Xu R, Zhu G, Shi N, Fan F, Liu Q (2009) Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang province, China. J Vector Ecol 34:148–154

    PubMed  CAS  Google Scholar 

  • Yit HS, Ku-Hua WV, Kumamoto JH, Axelrod MMS (1985) Isolation and identification of mosquito repellent in Artemesia vulgaris. J Chem Ecol 11:1297–1306

    Article  Google Scholar 

  • WHO (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. WHO/VBC/81–807, Geneva

  • WHO (2007) Combating waterborne diseases at the household level. Part1

  • WHO (2009) Dengue Guidelines for Diagnosis, Treatment, Prevention Control. World Health Organization: Geneva

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), Govt. of India, New Delhi, and Tamil Nadu State Council for Science and Technology (TNSCST), Chennai, Tamil Nadu, for providing financial support for the present work. The authors are grateful to Mr. N. Muthukrishnan, technician, and Mr. A. Anbarasan, lab assistant, National Centre for Diseases Control (NCDC), Mettupalayam, Tamil Nadu, for helping in mosquito sample collection and identifying mosquito species of samples provided for the experiment work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovendan, K., Murugan, K., Mahesh Kumar, P. et al. Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res 112, 1205–1219 (2013). https://doi.org/10.1007/s00436-012-3252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3252-8

Keywords

Navigation