Skip to main content
Log in

Green synthesis of nanoparticles using plant extracts: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles has many potential applications in environmental and biomedical fields. Green synthesis aims in particular at decreasing the usage of toxic chemicals. For instance, the use of biological materials such as plants is usually safe. Plants also contain reducing and capping agents. Here we present the principles of green chemistry, and we review plant-mediated synthesis of nanoparticles and their recent applications. Nanoparticles include gold, silver, copper, palladium, platinum, zinc oxide, and titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

4-AP:

4-Amino phenol

BET:

Brunauer–Emmett–Teller

CR:

Congo red

DLS:

Dynamic light scattering

2,4-DNPH:

2,4-Dinitrophenilhydrazine

EDS:

Energy-dispersive spectroscopy

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared

GO:

Graphene oxide

MB:

Methylene blue

MO:

Methyl orange

MR:

Methyl red

4-NP:

4-Nitrophenol

RhB:

Rhodamine B

RGO:

Reduced graphene oxide

SERS:

Surface-enhanced Raman scattering

TWW:

Tannery wastewater

References

  • Abisharani JM, Devikala S, Dinesh Kumar R, et al (2019) Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. In: Materials today: proceedings

  • Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resource-Effic Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  • Ahmad W, Jaiswal KK, Soni S (2020) Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1732419

    Article  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016a) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  • Ahmed S, Annu, Ikram S, Yudha S (2016b) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol 161:141–153

    CAS  Google Scholar 

  • Ahmed S, Saifullah Ahmad M et al (2016c) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7

    Google Scholar 

  • Akhter G, Khan A, Ali SG et al (2020) Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant. SN Appl Sci. https://doi.org/10.1007/s42452-020-3068-6

    Article  Google Scholar 

  • Al Ansari MS (2012) A review of optimal designs in relation to supply chains and sustainable chemical processes. Modern Appl Sci 6:74

    CAS  Google Scholar 

  • Ali S, Perveen S, Ali M et al (2020) Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110421

    Article  Google Scholar 

  • Al-Radadi NS (2019) Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab J Chem 12:330–349. https://doi.org/10.1016/j.arabjc.2018.05.008

    Article  CAS  Google Scholar 

  • Al-Radadi NS, Adam SIY (2020) Green biosynthesis of Pt-nanoparticles from Anbara fruits: toxic and protective effects on CCl4 induced hepatotoxicity in Wister rats. Arab J Chem 13:4386–4403. https://doi.org/10.1016/j.arabjc.2019.08.008

    Article  CAS  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B 146:52–57

    CAS  Google Scholar 

  • Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    CAS  Google Scholar 

  • Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia Catappa. E-J Chem. https://doi.org/10.1155/2010/745120

    Article  Google Scholar 

  • Arabi N, Kianvash A, Hajalilou A et al (2020) A facile and green synthetic approach toward fabrication of Alcea- and Thyme-stabilized TiO2 nanoparticles for photocatalytic applications. Arab J Chem 13:2132–2141. https://doi.org/10.1016/j.arabjc.2018.03.014

    Article  CAS  Google Scholar 

  • Arockiya Aarthi Rajathi F, Arumugam R, Saravanan S, Anantharaman P (2014) Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2014.03.016

    Article  Google Scholar 

  • Arsiya F, Sayadi MH, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115

    CAS  Google Scholar 

  • Aswini R, Murugesan S, Kannan K (2020) Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: larvicidal, histopathological, antibacterial and anticancer activity. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1718668

    Article  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Maret W (ed) Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3728-9_6

    Chapter  Google Scholar 

  • Aygun A, Gülbagca F, Ozer LY et al (2020) Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2019.112961

    Article  Google Scholar 

  • Aygün A, Özdemir S, Gülcan M et al (2020) Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal 178:112970. https://doi.org/10.1016/j.jpba.2019.112970

    Article  CAS  Google Scholar 

  • Bakand S, Hayes A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicol 24:125–135

    CAS  Google Scholar 

  • Balantrapu K, Goia DV (2009) Silver nanoparticles for printable electronics and biological applications. J Mater Res 24:2828–2836

    CAS  Google Scholar 

  • Banasiuk R, Krychowiak M, Swigon D et al (2020) Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.013

    Article  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP et al (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2009.07.021

    Article  Google Scholar 

  • Bayrami A, Haghgooie S, Rahim Pouran S et al (2020) Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Adv Powder Technol 31:2110–2118. https://doi.org/10.1016/j.apt.2020.03.004

    Article  CAS  Google Scholar 

  • Bergmann CP, de Andrade MJ (2011) Nanostructured materials for engineering applications. Springer, Berlin

    Google Scholar 

  • Bhagat DS, Gurnule WB, Pande SG, et al (2020) Biosynthesis of gold nanoparticles for detection of dichlorvos residue from different samples. In: Materials today: proceedings

  • Bhuyan T, Mishra K, Khanuja M et al (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    CAS  Google Scholar 

  • Boomi P, Poorani GP, Selvam S et al (2020) Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem. https://doi.org/10.1002/aoc.5574

    Article  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A et al (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    CAS  Google Scholar 

  • Centi G, Perathonar S (2009) From green to sustainable industrial chemistry. In: Cavani F, Centi G, Perathoner S, Trifiró F (eds) Sustainable industrial chemistry. https://doi.org/10.1002/9783527629114.ch1

  • Chandra C, Khan F (2020) Nano-scale zerovalent copper: green synthesis, characterization and efficient removal of uranium. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07080-1

    Article  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R et al (2006a) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. https://doi.org/10.1021/bp0501423

    Article  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R et al (2006b) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22:577–583

    CAS  Google Scholar 

  • Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Biosynthesis of silver nanoparticles using Saccharum officinarum and its antimicrobial activity. Micro Nano Lett 7:646–650

    Google Scholar 

  • Cheirmadurai K, Biswas S, Murali R, Thanikaivelan P (2014) Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. https://doi.org/10.1039/c4ra01414f

    Article  Google Scholar 

  • Clark JH, Macquarrie DJ (2008) Handbook of green chemistry and technology. Wiley, Hoboken

    Google Scholar 

  • Crowl DA, Louvar JF (2001) Chemical process safety: fundamentals with applications. Pearson Education, London

    Google Scholar 

  • Dar P, Waqas U, Hina A, et al (2016) Biogenic synthesis, characterization of silver nanoparticles using Multani mitti (Fullers Earth), Tomato (Solanum lycopersicum) seeds, Rice Husk (Oryza sativa) and evaluation of their potential antimicrobial activity. J Chem Soc Pak 38:665

  • Das J, Velusamy P (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2014.04.005

    Article  Google Scholar 

  • Doan V-D, Thieu AT, Nguyen T-D et al (2020) Biosynthesis of gold nanoparticles using Litsea cubeba fruit extract for catalytic reduction of 4-Nitrophenol. J Nanomater 2020:4548790. https://doi.org/10.1155/2020/4548790

    Article  CAS  Google Scholar 

  • Du L, Xian L, Feng J-X (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    CAS  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 1:103–108

    Google Scholar 

  • Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543

    Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13

    CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    CAS  Google Scholar 

  • Fernando SID, Judan Cruz KG (2020) Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of Quorum sensing-linked AhyR gene in Aeromonas hydrophila. SN Appl Sci. https://doi.org/10.1007/s42452-020-2368-1

    Article  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    CAS  Google Scholar 

  • Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    CAS  Google Scholar 

  • Ghosh NS, Pandey E, Giilhotra RM, Singh R (2020) Biosynthesis of gold nanoparticles using leaf extract of Desmodium gangeticum and their antioxidant activity. Res J Pharm Technol 13:2685–2689

    Google Scholar 

  • Goutam SP, Saxena G, Singh V et al (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2017.12.029

    Article  Google Scholar 

  • Guo M, Li W, Yang F, Liu H (2015) Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2015.01.109

    Article  Google Scholar 

  • Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Google Scholar 

  • Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090

    CAS  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surfaces B Biointerfaces 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. https://doi.org/10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  • Islam NU, Jalil K, Shahid M et al (2019) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.025

    Article  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. https://doi.org/10.1021/jp057170o

    Article  Google Scholar 

  • Jameel MS, Aziz AA, Dheyab MA (2020) Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods. Nano-Struct Nano-Objects 23:100484. https://doi.org/10.1016/j.nanoso.2020.100484

    Article  CAS  Google Scholar 

  • Jeong S, Choi SY, Park J et al (2011) Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J Mater Chem 21:13853–13859

    CAS  Google Scholar 

  • Jeyarani S, Vinita NM, Puja P et al (2020) Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2019.111715

    Article  Google Scholar 

  • Kalaiselvi A, Roopan SM, Madhumitha G et al (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2014.07.010

    Article  Google Scholar 

  • Karimi J, Mohsenzadeh S (2015) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth React Inorg Met-Org Nano-Met Chem. https://doi.org/10.1080/15533174.2013.862644

    Article  Google Scholar 

  • Kazlagić A, Abud OA, Ćibo M et al (2020) Green synthesis of silver nanoparticles using apple extract and its antimicrobial properties. Health Technol 10:147–150. https://doi.org/10.1007/s12553-019-00378-5

    Article  Google Scholar 

  • Keijok WJ, Pereira RHA, Alvarez LAC et al (2019) Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep. https://doi.org/10.1038/s41598-019-52496-9

    Article  Google Scholar 

  • Keshari AK, Srivastava R, Singh P et al (2020) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 1:37–44. https://doi.org/10.1016/j.jaim.2017.11.003

    Article  Google Scholar 

  • Kharey P, Dutta SB, Gorey A et al (2020) Pimenta dioica mediated biosynthesis of gold nanoparticles and evaluation of its potential for theranostic applications. ChemistrySelect 5:7901–7908. https://doi.org/10.1002/slct.202001230

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2018) Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.024

    Article  Google Scholar 

  • Kumar KM, Mandal BK, Tammina SK (2013) Green synthesis of nano platinum using naturally occurring polyphenols. RSC Adv. https://doi.org/10.1039/c3ra22959a

    Article  Google Scholar 

  • Kumar PSM, Francis AP, Devasena T (2014) Biosynthesized and chemically synthesized titania nanoparticles comparative analysis of antibacterial activity. J Environ Nanotechnol. https://doi.org/10.13074/jent.2014.09.143098

    Article  Google Scholar 

  • Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett 236:19–22

    Google Scholar 

  • Kumar CRR, Betageri VS, Nagaraju G et al (2020) One-pot synthesis of ZnO nanoparticles for nitrite sensing, photocatalytic and antibacterial studies. J Inorg Organometall Polym Mater. https://doi.org/10.1007/s10904-020-01544-3

    Article  Google Scholar 

  • Lateef A, Ojo SA, Elegbede JA (2016) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 5:601–622

    CAS  Google Scholar 

  • Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2016.09.027

    Article  Google Scholar 

  • Lee SH, Salunke BK, Kim BS (2014) Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. Biotechnol Bioprocess Eng 19:169–174

    CAS  Google Scholar 

  • Li S, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    CAS  Google Scholar 

  • Louis C, Pluchery O (2012) Gold nanoparticles for physics, chemistry and biology. World Scientific, Singapore

    Google Scholar 

  • Lukman AI, Gong B, Marjo CE et al (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444

    CAS  Google Scholar 

  • Manjare SB, Chaudhari RA (2020) Palladium nanoparticle-bentonite hybrid using leaves of syzygium aqueum plant from India: design and assessment in the catalysis of –C–C– coupling reaction. Chemistry Africa. https://doi.org/10.1007/s42250-020-00139-2

    Article  Google Scholar 

  • Mansoori GA (2005) Principles of nanotechnology: molecular-based study of condensed matter in small systems. World Scientific, Singapore

    Google Scholar 

  • Marimuthu S, Rahuman AA, Jayaseelan C et al (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med. https://doi.org/10.1016/S1995-7645(13)60118-2

    Article  Google Scholar 

  • Mehdizadeh T, Zamani A, Abtahi Froushani SM (2020) Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03528

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Murthy HCA, Desalegn T, Kassa M et al (2020) Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. Leaf extract: antimicrobial properties. J Nanomater. https://doi.org/10.1155/2020/3924081

    Article  Google Scholar 

  • Nabi G, Ain Q-U, Tahir MB et al (2020) Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1722816

    Article  Google Scholar 

  • Nadaf NY, Kanase SS (2019) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.09.020

    Article  Google Scholar 

  • Nadeem M, Tungmunnithum D, Hano C et al (2018) The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett and Rev. https://doi.org/10.1080/17518253.2018.1538118430

    Article  Google Scholar 

  • Naghdi S, Sajjadi M, Nasrollahzadeh M et al (2018) Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J Taiwan Inst Chem Eng 86:158–173. https://doi.org/10.1016/j.jtice.2017.12.017

    Article  CAS  Google Scholar 

  • Narasaiah BP, Mandal BK (2020) Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles. J Saudi Chem Soc 24:267–281. https://doi.org/10.1016/j.jscs.2019.11.003

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. https://doi.org/10.1016/j.matlet.2008.08.044

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79. https://doi.org/10.1016/j.cis.2011.08.004

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Maham M, Rostami-Vartooni A et al (2015a) Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide-Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free cond. RSC Adv. https://doi.org/10.1039/c5ra10037b

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M (2015b) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2014.10.019

    Article  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology—a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014. https://doi.org/10.1016/j.etap.2013.09.002

    Article  CAS  Google Scholar 

  • Nelson D, Priscyla DM, Oswaldo LA et al (2005) Mechanical aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Google Scholar 

  • Odeniyi MA, Okumah VC, Adebayo-Tayo BC, Odeniyi OA (2020) Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2019.100197

    Article  Google Scholar 

  • Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300

    CAS  Google Scholar 

  • Ovais M, Khalil AT, Islam NU et al (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102:6799–6814

    CAS  Google Scholar 

  • Pal G, Rai P, Pandey A (2019) Chapter 1—Green synthesis of nanoparticles: a greener approach for a cleaner future. In: Shukla AK, Iravani (eds) Characterization and applications of nanoparticles SBT-GS micro and nano technologies. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Paul B, Bhuyan B, Dhar Purkayastha D et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett. https://doi.org/10.1016/j.matlet.2015.02.054

    Article  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2009.02.037

    Article  Google Scholar 

  • Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys E Low-Dimens Syst Nanostruct. https://doi.org/10.1016/j.physe.2009.11.081

    Article  Google Scholar 

  • Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM (2020) Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki–Heck catalytic activities. Adv Powder Technol. https://doi.org/10.1016/j.apt.2020.01.024

    Article  Google Scholar 

  • Rahmatullah M, Sultan S, Toma TT et al (2010) Effect of Cuscuta reflexa stem and Calotropis procera leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice. Afr J Tradit Complement Altern Med. https://doi.org/10.4314/ajtcam.v7i2.50864

    Article  Google Scholar 

  • Rajkumar T, Sapi A, Das G et al (2019) Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B Biol 193:1–7

    CAS  Google Scholar 

  • Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365

    CAS  Google Scholar 

  • Razavi M, Salahinejad E, Fahmy M et al (2015) Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Basiuk V, Basiuk E (eds) Green processes for nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_7

  • Robert KW, Parris TM, Leiserowitz AA (2005) What is sustainable development? Goals, indicators, values, and practice. Environ Sci Policy Sustain Dev 47:8–21

    Google Scholar 

  • Roopan SM, Bharathi A, Prabhakarn A et al (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2012.08.055

    Article  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G et al (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. https://doi.org/10.1007/s00436-010-2115-4

    Article  Google Scholar 

  • Sastry ABS, Karthik Aamanchi RB, Sree Rama Linga Prasad C, Murty BS (2013) Large-scale green synthesis of Cu nanoparticles. Environm Chem Lett. https://doi.org/10.1007/s10311-012-0395-x

    Article  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW et al (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surfaces B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2009.06.005

    Article  Google Scholar 

  • Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182. https://doi.org/10.1016/j.matlet.2013.09.020

    Article  CAS  Google Scholar 

  • Selvi AM, Palanisamy S, Jeyanthi S et al (2020) Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem. https://doi.org/10.1016/j.procbio.2020.07.008

    Article  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020) Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth. https://doi.org/10.1515/gps-2020-0018

    Article  Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazardous Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. https://doi.org/10.1039/b303808b

    Article  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    CAS  Google Scholar 

  • Sheik Mydeen S, Raj Kumar R, Kottaisamy M, Vasantha VS (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: antibacterial activities and a new approach by rust-induced photocatalysis. J Saudi Chem Soc 24:393–406. https://doi.org/10.1016/j.jscs.2020.03.003

    Article  CAS  Google Scholar 

  • Sheny DS, Philip D, Mathew J (2012) Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochimica Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2012.01.063

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482. https://doi.org/10.1186/s11671-016-1695-z

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim K-H et al (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84

    CAS  Google Scholar 

  • Singh T, Singh A, Wang W, et al (2019) Biosynthesized nanoparticles and its implications in agriculture. In: Biological synthesis of nanoparticles and their applications. CRC Press, pp 257–274. ISBN-13:978-0-367-21069-4

  • Sivaranjani V, Philominathan P (2016) Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med. https://doi.org/10.1016/j.wndm.2015.11.002

    Article  Google Scholar 

  • Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. https://doi.org/10.1016/j.procbio.2009.06.005

    Article  Google Scholar 

  • Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-009-0373-2

    Article  Google Scholar 

  • Soundarrajan C, Sankari A, Dhandapani P et al (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-011-0666-0

    Article  Google Scholar 

  • Sperling RA, Gil PR, Zhang F et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev. https://doi.org/10.1039/b712170a

    Article  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    CAS  Google Scholar 

  • Subbiah R, Veerapandian M, Yun SK (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    CAS  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17:835–840

    CAS  Google Scholar 

  • Tahir K, Nazir S, Li B et al (2015) Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater Lett. https://doi.org/10.1016/j.matlet.2015.05.062

    Article  Google Scholar 

  • Tamuly C, Hazarika M, Bordoloi M (2013) Biosynthesis of Au nanoparticles by Gymnocladus assamicus and its catalytic activity. Mater Lett. https://doi.org/10.1016/j.matlet.2013.07.020

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A et al (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    CAS  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G et al (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res. https://doi.org/10.1007/s00436-011-2676-x

    Article  Google Scholar 

  • Velmurugan P, Shim J, Kim K, Oh BT (2016) Prunus × yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett. https://doi.org/10.1016/j.matlet.2016.03.069

    Article  Google Scholar 

  • Vijayakumar S, Arulmozhi P, Kumar N et al (2020) Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: characterization and antimicrobialactivities. Mater Today Proc 23:73–80. https://doi.org/10.1016/j.matpr.2019.06.660

    Article  CAS  Google Scholar 

  • Vijikumar S, Ramanathan K, Devi BP (2011) Cuscuta reflexa ROXB. A wonderful miracle plant in ethnomedicine. Indian J Nat Sci 976:997

    Google Scholar 

  • Wang Y, O’Connor D, Shen Z et al (2019) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod 226:540–549

    CAS  Google Scholar 

  • Wilson MP, Schwarzman MR (2009) Toward a new US chemicals policy: rebuilding the foundation to advance new science, green chemistry, and environmental health. Environ Health Perspect 117:1202–1209

    CAS  Google Scholar 

  • Zangeneh MM, Zangeneh A (2020) Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl Organomet Chem. https://doi.org/10.1002/aoc.5271

    Article  Google Scholar 

  • Zhang YX, Zheng J, Gao G et al (2011) Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomed. https://doi.org/10.2147/ijn.s24785

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Elsevier, Springer, and Taylor & Francis for copyright permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapana Jadoun.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadoun, S., Arif, R., Jangid, N.K. et al. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19, 355–374 (2021). https://doi.org/10.1007/s10311-020-01074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01074-x

Keywords

Navigation