Skip to main content
Log in

Green-light p-n junction particle inhomogeneous phase enhancement of MgB2 smart meta-superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improving the critical temperature (TC), critical magnetic field (HC), and critical current (JC) of superconducting materials has always been one of the most significant challenges in the field of superconductivity, but progress has been slow over the years. Based on the concept of injecting energy to enhance electron pairing states, in this study, we introduce green-light GaN p-n junction particles (center wavelength 550 nm) as inhomogeneous phases into MgB2 superconducting materials, forming a smart meta-superconductors structure. Leveraging the electroluminescent properties of p-n junctions, we excite and reinforce Cooper pairs, enhancing the superconducting properties of the MgB2 material. Experimental results demonstrate that compared to pure MgB2 samples, the critical transition temperature (TC) has increased by 1.2 K, the critical current (JC) has increased by 52.8%, and the Meissner effect (HC) shows significant improvement in its diamagnetic properties. This phenomenon of enhanced superconducting performance can be explained by the coupling between superconducting electrons and evanescent waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available on reasonable request from the corresponding author.

References

  1. B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides. Nature. 518, 179–186 (2015). https://doi.org/10.1038/nature14165

    Article  ADS  CAS  PubMed  Google Scholar 

  2. H. Hosono, K. Kuroki, Iron-based superconductors: current status of materials and pairing mechanism. Phys. C Supercond. Appl. 514, 399–422 (2015). https://doi.org/10.1016/j.physc.2015.02.020

    Article  ADS  CAS  Google Scholar 

  3. H. Takahashi et al., Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature. 453, 376–378 (2008). https://doi.org/10.1038/nature06972

    Article  ADS  CAS  PubMed  Google Scholar 

  4. R.M. Fernandes et al., Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature. 601, 35–44 (2022). https://doi.org/10.1038/s41586-021-04073-2

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Y. Cao et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 556, 80– (2018). https://doi.org/10.1038/nature26154

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Y. Cao et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature. 556, 43– (2018). https://doi.org/10.1038/nature26160

    Article  ADS  CAS  PubMed  Google Scholar 

  7. C.W. Chu, L.Z. Deng, B. Lv, Hole-doped cuprate high temperature superconductors. Phys. C Supercond. Appl. 514, 290–313 (2015). https://doi.org/10.1016/j.physc.2015.02.047

    Article  ADS  CAS  Google Scholar 

  8. D.F. Agterberg et al., in Annual Review of Condensed Matter Physics, vol. 11, ed. by M.C. Marchetti, A.P. Mackenzie (2020), pp. 231–270. https://doi.org/10.1146/annurev-conmatphys-031119-050711

  9. R. Dingle, H.L. Stormer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction super-lattices. Appl. Phys. Lett. 33, 665–667 (1978). https://doi.org/10.1063/1.90457

    Article  ADS  CAS  Google Scholar 

  10. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S. Shylin, I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525, 73– (2015). https://doi.org/10.1038/nature14964

    Article  ADS  CAS  PubMed  Google Scholar 

  11. A.P. Drozdov et al., Superconductivity at 250 K in lanthanum hydride under high pressures. Nature. 569, 528–531 (2019). https://doi.org/10.1038/s41586-019-1201-8

    Article  ADS  CAS  PubMed  Google Scholar 

  12. M.L. Cohen, Superconductivity in modified semiconductors and the path to higher transition temperatures. Supercond. Sci. Technol. (2015). https://doi.org/10.1088/0953-2048/28/4/043001

    Article  Google Scholar 

  13. N.W. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.92.187002

    Article  PubMed  Google Scholar 

  14. R. Mankowsky et al., Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014). https://doi.org/10.1038/nature13875

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Q. Zhao et al., The defect effect in the one-dimensional negative permeability material. Acta Phys. Sinica. 53, 2206–2211 (2004). https://doi.org/10.7498/aps.53.2206

    Article  CAS  Google Scholar 

  16. X. Zhao, Bottom-up fabrication methods of optical metamaterials. J. Mater. Chem. 22, 9439–9449 (2012). https://doi.org/10.1039/c2jm15979a

    Article  CAS  Google Scholar 

  17. V.N. Smolyaninova et al., Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials. Sci. Rep. (2014). https://doi.org/10.1038/srep07321

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Cao et al., Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature. 583, 215– (2020). https://doi.org/10.1038/s41586-020-2260-6

    Article  ADS  CAS  PubMed  Google Scholar 

  19. H.Y. Hwang et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012). https://doi.org/10.1038/nmat3223

    Article  ADS  CAS  PubMed  Google Scholar 

  20. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, J.-M. Triscone, in Annual Review of Condensed Matter Physics, vol. 2, ed. by J. S. Langer (2011), pp. 141–165. https://doi.org/10.1146/annurev-conmatphys-062910-140445

  21. A.D. Caviglia et al., Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature. 456, 624–627 (2008). https://doi.org/10.1038/nature07576

    Article  ADS  CAS  PubMed  Google Scholar 

  22. A. Gozar et al., High-temperature interface superconductivity between metallic and insulating copper oxides. Nature. 455, 782–785 (2008). https://doi.org/10.1038/nature07293

    Article  ADS  CAS  PubMed  Google Scholar 

  23. A.K. Geim, I.V. Grigorieva, Van Der Waals heterostructures. Nature. 499, 419–425 (2013). https://doi.org/10.1038/nature12385

    Article  CAS  PubMed  Google Scholar 

  24. I. Bozovic et al., Giant proximity effect in cuprate superconductors. Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.157002

    Article  PubMed  Google Scholar 

  25. G. Mazza, A. Amaricci, M. Capone, Interface and bulk superconductivity in superconducting heterostructures with enhanced critical temperatures. Phys. Rev. B (2021). https://doi.org/10.1103/PhysRevB.103.094514

    Article  Google Scholar 

  26. Z. Zhang, S. Tao, G. Chen, X. Zhao, Improving the critical temperature of MgB2 Superconducting metamaterials Induced by Electroluminescence. J. Supercond. Novel Magn. 29, 1159–1162 (2016). https://doi.org/10.1007/s10948-015-3344-7

    Article  CAS  Google Scholar 

  27. S. Tao, Y. Li, G. Chen, X. Zhao, Critical temperature of smart meta-superconducting MgB2. J. Supercond. Novel Magn. 30, 1405–1411 (2017). https://doi.org/10.1007/s10948-016-3963-7

    Article  CAS  Google Scholar 

  28. Y. Li, H. Chen, W. Qi, G. Chen, X. Zhao, Inhomogeneous phase effect of smart meta-superconducting. J. Low Temp. Phys. 191, 217–227 (2018). https://doi.org/10.1007/s10909-018-1865-8

    Article  ADS  CAS  Google Scholar 

  29. H. Chen, Y. Li, G. Chen, L. Xu, X. Zhao, The effect of inhomogeneous phase on the critical temperature of smart meta-superconductor MgB2. J. Supercond. Novel Magn. 31, 3175–3182 (2018). https://doi.org/10.1007/s10948-018-4599-6

    Article  CAS  Google Scholar 

  30. Y. Li, H. Chen, M. Wang, L. Xu, X. Zhao, Smart meta-superconductor MgB2 constructed by the dopant phase of luminescent nanocomposite. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-50663-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. H.G. Chen et al., Smart metastructure method for increasing TC of Bi(pb)SrCaCuO high-temperature superconductors. J. Supercond. Novel Magn. 33, 3015–3025 (2020). https://doi.org/10.1007/s10948-020-05591-2

    Article  CAS  Google Scholar 

  32. Y. Li et al., Reinforcing increase of delta TC in MgB2 smart meta-superconductors by adjusting the concentration of inhomogeneous phases. Materials (2021). https://doi.org/10.3390/ma14113066

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Chen, M. Wang, Y. Qi, Y. Li, X. Zhao,  Relationship between the TC of smart meta-superconductor Bi(Pb)SrCaCuO and inhomogeneous phase content. Nanomaterials (2021). https://doi.org/10.3390/nano11051061

    Article  PubMed  PubMed Central  Google Scholar 

  34. H. Chen et al., Critical current density and meissner effect of smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO. Materials (2022). https://doi.org/10.3390/ma15030972

    Article  PubMed  PubMed Central  Google Scholar 

  35. X. Zhao et al., An improved smart meta-superconductor. Nanomaterials (2022). https://doi.org/10.3390/nano12152590

    Article  PubMed  PubMed Central  Google Scholar 

  36. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature. 410, 63–64 (2001). https://doi.org/10.1038/35065039

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Y. Zhang, X.J. Xu, Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression. Phys. C Supercond. Appl. (2020). https://doi.org/10.1016/j.physc.2020.1353633

    Article  Google Scholar 

  38. Y. Zhang, X.J. Xu, Machine learning doped MgB2 superconductor critical temperature from topological indices. Int. J. Mater. Res. 113, 652–662 (2022). https://doi.org/10.1515/ijmr-2021-8557

    Article  CAS  Google Scholar 

  39. J.T. Ye et al., Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010). https://doi.org/10.1038/nmat2587

    Article  ADS  CAS  PubMed  Google Scholar 

  40. K. Taniguchi, A. Matsumoto, H. Shimotani, H. Takagi, Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4740268

    Article  Google Scholar 

  41. G. Chen, W. Qi, Y. Li, C. Yang, X. Zhao, Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties. J. Mater. Sci. Mater. Electron. 27, 5628–5634 (2016). https://doi.org/10.1007/s10854-016-4470-0

    Article  CAS  Google Scholar 

  42. M. Wang, L. Xu, G. Chen, X. Zhao, Topological luminophor Y2O3:Eu3++Ag with high electroluminescence performance. ACS Appl. Mater. Interfaces 11, 2328–2335 (2019). https://doi.org/10.1021/acsami.8b20046

    Article  CAS  PubMed  Google Scholar 

  43. P. Sunwong, J.S. Higgins, Y. Tsui, M.J. Raine, D.P. Hampshire, The critical current density of grain boundary channels in polycrystalline HTS and LTS superconductors in magnetic fields. Supercond. Sci. Technol. (2013). https://doi.org/10.1088/0953-2048/26/9/095006

    Article  Google Scholar 

  44. D. Rakshit, T. Sk, P. Das, S. Haldar, A.K. Ghosh, Exponential reduction in critical current density in Eu1-xCexBa2Cu3O7-8 superconductors near critical temperature. Phys. C Supercond. Appl. (2021). https://doi.org/10.1016/j.physc.2021.1353909

    Article  Google Scholar 

  45. A.G. Bhagurkar et al., High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-31416-3

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. Galluzzi et al., DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor. J. Magn. Magn. Mater. 475, 125–129 (2019). https://doi.org/10.1016/j.jmmm.2018.11.119

    Article  ADS  CAS  Google Scholar 

  47. J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Study of MgO formation and structural defects in in situ processed MgB2/Fe wires. Supercond. Sci. Technol. 20, 1026–1031 (2007). https://doi.org/10.1088/0953-2048/20/10/023

    Article  ADS  CAS  Google Scholar 

  48. Q. Zhao et al., Synthesis of three-dimensional carbon nanosheets and its flux pinning mechanisms in C-doped MgB2 Superconductors. Materials (2022). https://doi.org/10.3390/ma15217530

    Article  PubMed  PubMed Central  Google Scholar 

  49. X.H. Chen et al., Correlation between the residual resistance ratio and magnetoresistance in MgB2. Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.65.024502

    Article  Google Scholar 

  50. Y. Xing, P. Bernstein, M. Miryala, J.G. Noudem, High critical current density of nanostructured MgB2 Bulk superconductor densified by spark plasma sintering. Nanomaterials (2022). https://doi.org/10.3390/nano12152583

    Article  PubMed  PubMed Central  Google Scholar 

  51. S.X. Dou et al., Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SIC doping. Appl. Phys. Lett. 81, 3419–3421 (2002). https://doi.org/10.1063/1.1517398

    Article  ADS  CAS  Google Scholar 

  52. D. Batalu, A.M. Stanciuc, L. Moldovan, G. Aldica, P. Badica, Evaluation of pristine and Eu2O3-added MgB2 ceramics for medical applications: hardness, corrosion resistance, cytotoxicity and antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 350–361 (2014). https://doi.org/10.1016/j.msec.2014.05.046

    Article  CAS  PubMed  Google Scholar 

  53. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science. 292, 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  ADS  CAS  PubMed  Google Scholar 

  54. C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 14, R115–R146 (2001). https://doi.org/10.1088/0953-2048/14/11/201

    Article  ADS  CAS  Google Scholar 

  55. H. Zhang, Y. Zhao, Y. Zhang, The effects of excess mg addition on the superconductivity of MgB2. J. Supercond. Novel Magn. 28, 2711–2714 (2015). https://doi.org/10.1007/s10948-015-3120-8

    Article  CAS  Google Scholar 

  56. S.S. Arvapalli, M. Miryala, M. Jirsa, M. Murakami, Size reduction of boron particles by high-power ultrasound for optimization of bulk MgB2. Supercond. Sci. Technol. (2020). https://doi.org/10.1088/1361-6668/abb63e

    Article  Google Scholar 

  57. J. Peng et al., Enhancement of critical current density by a MgB2-MgB4 reversible reaction in self-sintered ex-situ MgB2 bulks. J. Alloys Compd. 694, 24–29 (2017). https://doi.org/10.1016/j.jallcom.2016.09.312

    Article  CAS  Google Scholar 

  58. D.C. Larbalestier et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature. 410, 186–189 (2001). https://doi.org/10.1038/35065559

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Y. Bugoslavsky, G.K. Perkins, X. Qi, L.F. Cohen, A. Caplin, Vortex dynamics in superconducting MgB2 and prospects for applications. Nature 410, 563–565 (2001). https://doi.org/10.1038/35069029

    Article  ADS  CAS  PubMed  Google Scholar 

  60. C.H. Cheng, Y. Yang, P. Munroe, Y. Zhao, Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2. Supercond. Sci. Technol. 20, 296–301 (2007). https://doi.org/10.1088/0953-2048/20/3/032

    Article  ADS  CAS  Google Scholar 

  61. M. Eisterer et al., Universal influence of disorder on MgB2 wires. Supercond. Sci. Technol. 20, 117–122 (2007). https://doi.org/10.1088/0953-2048/20/3/001

    Article  ADS  CAS  Google Scholar 

  62. J. Wang et al., High critical current density and improved irreversibility field in bulk MgB2 made by a scaleable, nanoparticle addition route. Appl. Phys. Lett. 81, 2026–2028 (2002). https://doi.org/10.1063/1.1506184

    Article  ADS  CAS  Google Scholar 

  63. Z. Zhang et al., Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 60, 1301–1304 (2015). https://doi.org/10.1007/s11434-015-0842-8

    Article  CAS  Google Scholar 

  64. M. Basoglu, I. Duzgun, Improvement of current density of different atmosphere-sintered Y358 superconductors. J. Supercond. Novel Magn. 29, 1737–1740 (2016). https://doi.org/10.1007/s10948-016-3481-7

    Article  CAS  Google Scholar 

  65. V. Sandu et al., Superconductivity in MgB2 irradiated with energetic protons. Phys. C Supercond. Appl. 528, 27–34 (2016). https://doi.org/10.1016/j.physc.2016.07.006

    Article  ADS  CAS  Google Scholar 

  66. T. Sakuntala et al., Raman scattering investigation of electron-phonon coupling in carbon substituted MgB2. J. Phys. Condens. Matter 17, 3285–3292 (2005). https://doi.org/10.1088/0953-8984/17/21/021

    Article  ADS  CAS  Google Scholar 

  67. K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett. 86, 5771–5774 (2001). https://doi.org/10.1103/PhysRevLett.86.5771

    Article  ADS  CAS  PubMed  Google Scholar 

  68. B. Renker et al., Strong renormalization of phonon frequencies in Mg1-xAlxB2. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.88.067001

    Article  PubMed  Google Scholar 

  69. W.X. Li, R. Zeng, L. Lu, S.X. Dou, Effect of thermal strain on J(c) and Tc in high density nano-SiC doped MgB2. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3549590

    Article  PubMed  PubMed Central  Google Scholar 

  70. P. Postorino et al., Effect of the Al content on the optical phonon spectrum in Mg1-xAlxB2. Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.65.020507

    Article  Google Scholar 

  71. D. Di Castro et al., Raman spectra of neutron-irradiated and Al-doped MgB2. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.100505

    Article  Google Scholar 

  72. A. Bateni, E. Erdem, S. Repp, S. Weber, M. Somer, Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4949338

    Article  Google Scholar 

  73. A.F. Goncharov, V.V. Struzhkin, Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Phys. C Supercond. Appl. 385, 117–130 (2003). https://doi.org/10.1016/s0921-4534(02)02311-0

    Article  ADS  CAS  Google Scholar 

  74. J. Arvanitidis et al., Raman spectroscopic study of carbon substitution in MgB2. J. Phys. Chem. Solids. 65, 73–77 (2004). https://doi.org/10.1016/j.jpcs.2003.08.010

    Article  ADS  CAS  Google Scholar 

  75. D. Novko, F. Caruso, C. Draxl, E. Cappelluti, Ultrafast hot phonon dynamics in MgB2 driven by anisotropic electron-phonon coupling. Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.124.077001

    Article  PubMed  Google Scholar 

  76. A.V. Pogrebnyakov et al., Enhancement of the superconducting transition temperature of MgB2 by a strain-induced bond-stretching mode softening. Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.147006

    Article  PubMed  Google Scholar 

  77. W.X. Li, X. Xu, K.S.B. De Silva, F.X. Xiang, S.X. Dou, Graphene Micro-Substrate Induced High Electron-Phonon Coupling in MgB2. IEEE Trans. Appl. Supercond. (2013). https://doi.org/10.1109/tasc.2012.2231139

    Article  Google Scholar 

  78. A. Bianconi et al., Controlling the critical temperature in Mg1-xAlxB2. J. Supercond. Novel Magn. 20, 495–503 (2007). https://doi.org/10.1007/s10948-007-0279-7

    Article  ADS  CAS  Google Scholar 

  79. Q. Zhao, C. Jiao, E. Zhu, Z. Zhu, Refinement of MgB2 grains and the improvement of flux pinning in MgB2 superconductor through nano-Ni addition. J. Alloys Compd. 717, 19–24 (2017). https://doi.org/10.1016/j.jallcom.2017.04.206

    Article  CAS  Google Scholar 

  80. F. Cheng et al., Enhancement of grain connectivity and critical current density in the ex-situ sintered MgB2 superconductors by doping minor Cu. J. Alloys Compd. 727, 1105–1109 (2017). https://doi.org/10.1016/j.jallcom.2017.08.152

    Article  CAS  Google Scholar 

  81. Y. Yang, M.D. Sumption, E.W. Collings, Influence of metal diboride and Dy2O3 additions on microstructure and properties of MgB2 fabricated at high temperatures and under pressure. Sci. Rep. (2016). https://doi.org/10.1038/srep29306

    Article  PubMed  PubMed Central  Google Scholar 

  82. Y. Zhang, X.J. Xu, Predicting the superconducting transition temperature and relative resistance ratio in YBa2Cu3O7 films. Phys. C Supercond. Appl. (2022). https://doi.org/10.1016/j.physc.2021.1353998

    Article  Google Scholar 

  83. Y. Zhang, X.J. Xu, Disordered MgB2 superconductor critical temperature modeling through regression trees. Phys. C Supercond. Appl. (2022). https://doi.org/10.1016/j.physc.2022.1354062

    Article  Google Scholar 

  84. O.V. Shcherbakova, D.I. dos Santos, S.X. Dou, Effect of Mg-Ga powder addition on the superconducting properties of MgB2 samples. Phys. C Supercond. Appl. 460, 583–584 (2007). https://doi.org/10.1016/j.physc.2007.04.117

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, XZ; software, YQ, DC, and CS; validation, YQ, YL, and DC; formal analysis, YQ, HC, and YL; investigation, YQ, DC, CS, YL, and QH; resources, XZ; data curation, YQ, YL, and MS., writing and original draft preparation, YQ; writing, reviewing, and editing of the manuscript, YQ and XZ; visualization, YZ, QH, and MS; supervision, XZ; project administration, XZ; funding acquisition, XZ; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaopeng Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Chen, D., Li, Y. et al. Green-light p-n junction particle inhomogeneous phase enhancement of MgB2 smart meta-superconductors. J Mater Sci: Mater Electron 35, 424 (2024). https://doi.org/10.1007/s10854-024-12231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12231-1

Navigation