Skip to main content
Log in

Critical Temperature of Smart Meta-superconducting MgB2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Enhancing the critical temperature (T C ) is important not only to widen the practical applications but also to expand the theories of superconductivity. Inspired by the meta-material structure, we designed a smart meta-superconductor consisting of MgB2 microparticles and Y2O3/Eu3+ nanorods. In the local electric field, Y2O3/Eu3+ nanorods generate an electroluminescence (EL) that can excite MgB2 particles, thereby improving the T C by strengthening the electron–phonon interaction. An MgB2-based superconductor doped with one of four dopants of different EL intensities was prepared by an ex situ process. Results showed that the T C of MgB2 doped with 2 wt% Y2O3, which is not an EL material, is 33.1 K. However, replacing Y2O3 with Y2O3/Eu3+II, which displays a strong EL intensity, can improve the T C by 2.8 to 35.9 K, which is even higher than that of pure MgB2. The significant increment in T C results from the EL exciting effect. Apart from EL intensity, the micromorphology and degree of dispersion of the dopants also affected the T C . This smart meta-superconductor provides a new method to increase T C .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Onnes, H.K.: Comm. Phys. Lab. Univ. Leiden 12, 120b (1911)

    Google Scholar 

  2. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296–3297 (2008)

    Article  Google Scholar 

  3. Fausti, D., Tobey, R.I., Dean, N., Kaiser, S., Dienst, A., Hoffmann, M.C., Pyon, S., Takayama, T., Takagi, H., Cavalleri, A.: Science 331, 189–191 (2011)

    Article  ADS  Google Scholar 

  4. Dienst, A., Casandruc, E., Fausti, D., Zhang, L., Eckstein, M., Hoffmann, M., Khanna, V., Dean, N., Gensch, M., Winnerl, S., Seidel, W., Pyon, S., Takayama, T., Takagi, H., Cavalleri, A.: Nat. Mater. 12(6), 535–541 (2013)

    Article  ADS  Google Scholar 

  5. Hu, W., Kaiser, S., Nicoletti, D., Hunt, C.R., Gierz, I., Hoffmann, M.C., Tacon, M.L., Loew, T., Keimer, B., Cavalleri, A.: Nat. Mater. 13, 705–711 (2014)

    Article  ADS  Google Scholar 

  6. Mitrano, M., Cantaluppi, A., Nicoletti, D., Kaiser, S., Perucchi, A., Lupi, S., Di Pietro, P., Pontiroli, D., Ricco, M., Clark, S.R., Jaksch, D., Cavalleri, A.: Nature 530(7591), 461–464 (2016)

    Article  ADS  Google Scholar 

  7. Mankowsky, R., Subedi, A., Forst, M., Mariager, S.O., Chollet, M., Lemke, H.T., Robinson, J.S., Glownia, J.M., Minitti, M.P., Frano, A., Fechner, M., Spaldin, N.A., Loew, T., Keimer, B., Georges, A., Cavalleri, A.: Nature 516(7529), 71–73 (2014)

    Article  ADS  Google Scholar 

  8. Bardeedn, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108(5), 1175–1204 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  9. McMillan, W.L.: Phys. Rev. 167(2), 331–344 (1968)

    Article  ADS  Google Scholar 

  10. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  11. Kortus, J., Mazin, I.I., Belashchenko, K.D., Antropov, V.P., Boyer, L.L.: Phys. Rev. Lett. 86 (20), 4656–4659 (2001)

    Article  ADS  Google Scholar 

  12. Slusky, J.S., Rogado, N., Regan, K.A., Hayward, M.A., Khalifah, P., He, T., Inumaru, K., Loureiro, S.M., Haas, M.K., Zandbergen, H.W., Cava, R.J.: Nature 410(6826), 343–345 (2001)

    Article  ADS  Google Scholar 

  13. Kazakov, S.M., Puzniak, R., Rogacki, K., Mironov, A.V., Zhigadlo, N.D., Jun, J., Soltmann, C., Batlogg, B., Karpinski, J.: Phys. Rev. B 71(2), 024533 (2005)

    Article  ADS  Google Scholar 

  14. Bianconi, A., Busby, Y., Fratini, M., Palmisano, V., Simonelli, L., Filippi, M., Sanna, S., Congiu, F., Saccone, A., Giovannini, M., De Negri, S.: J. Supercond. Nov. Magn. 20(7), 495–501 (2007)

    Article  ADS  Google Scholar 

  15. Dogruer, M., Yildirim, G., Ozturk, O., Terzioglu, C.: J. Supercond. Nov. Magn. 26(1), 101–109 (2012)

    Article  Google Scholar 

  16. Pitillas, A., Grivel, J.-C.: J. Supercond. Nov. Magn. 28(8), 2495–2500 (2015)

    Article  Google Scholar 

  17. Zhang, H., Zhao, Y., Zhang, Y.: J. Supercond. Nov. Magn. 28(9), 2711–2714 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liu, H., Zhao, X.P., Yang, Y., Li, Q.W., Lv, J.: Adv. Mater. 20(11), 2050–2054 (2008)

    Article  Google Scholar 

  19. Zhao, X.P.: J. Mater. Chem. 22(19), 9439–9449 (2012)

    Article  Google Scholar 

  20. Hamm, J.M., Hess, O.: Science 340(6138), 1298–1299 (2013)

    Article  ADS  Google Scholar 

  21. Qiao, Y.P., Zhao, X.P., Su, Y.Y.: J. Mater. Chem. 21(2), 394–399 (2011)

    Article  Google Scholar 

  22. Cargnello, M., Johnston-Peck, A.C., Diroll, B.T., Wong, E., Datta, B., Damodhar, D., Doan-Nguyen, V.V., Herzing, A.A., Kagan, C.R., Murray, C.B.: Nature 524(7566), 450–453 (2015)

    Article  ADS  Google Scholar 

  23. Jiang, W.T., Xu, Z.L., Chen, Z., Zhao, X.P.: J. Funct. Mater 38, 157–160 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm

    Google Scholar 

  24. Xu, S.H., Zhou, Y.W., Zhao, X.P.: Mater. Rev. 21, 162–166 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm

    Google Scholar 

  25. Kirzhnits, D.A., Maksimov, E.G., Khomskii, D.I.: J. Low Temp. Phys. 10(1-2), 79–93 (1973)

    Article  ADS  Google Scholar 

  26. Smolyaninov, I.I., Smolyaninova, V.N.: Adv. Condens. Matter Phys., 479635 (2014)

  27. Smolyaninova, V.N., Zander, K., Gresock, T., Jensen, C., Prestigiacomo, J.C., Osofsky, M.S., Smolyaninov, I.I.: Sci. Report. 5, 15777 (2015)

    Article  ADS  Google Scholar 

  28. Zhao, X.P., Zhang, Z.W., Tao, S., Chen, G.W.: Chinese Patent CN104774013A

  29. Zhang, Z.W., Tao, S., Chen, G.W., Zhao, X.P.: J. Supercond. Nov. Magn. 29(5), 1159–1162 (2016)

    Article  Google Scholar 

  30. Chen, G.W., Qi, W.C., Li, Y.B., Yang, C.S., Zhao, X.P.: J. Mater. Sci.: Mater. Electron. 27(6), 5628–5634 (2016)

    Google Scholar 

  31. Zhao, X.P., Tao, S., Li, Y.B., Chen, G.W.: Chinese Patent 201610206412.X

  32. Suzuki, H.: Adv. Mater. 8, 657–659 (1994)

    Article  Google Scholar 

  33. Kušević, I., Marohnić, ž., Babić, E., Drobac, Ð., Wang, X.L., Dou, S.X.: Solid State Commun. 122, 347–350 (2002)

    Article  ADS  Google Scholar 

  34. Bhadauria, P.P.S., Gupta, A., Kishan, H., Narlikar, A.V.: J. Appl. Phys. 115(18), 183905 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Li, Y., Chen, G. et al. Critical Temperature of Smart Meta-superconducting MgB2 . J Supercond Nov Magn 30, 1405–1411 (2017). https://doi.org/10.1007/s10948-016-3963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3963-7

Keywords

Navigation