Skip to main content
Log in

Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of high-performance microwave absorption materials (MAM) with stabilized magnetic properties at high temperatures is specifically essential but remains challenging. Moreover, the Snoke’s limitation restrains the microwave absorption (MA) property of magnetic materials. Modulating alloy components is considered an effective way to solve the aforementioned problems. Herein, a hollow medium-entropy FeCoNiAl alloy with a stable magnetic property is prepared via simple spray-drying and two-step annealing for efficient MA. FeCoNiAl exhibited an ultrabroad effective absorption band (EAB) of 5.84 GHz (12.16–18 GHz) at a thickness of just 1.6 mm, revealing an excellent absorption capability. Furthermore, the MA mechanism of FeCoNiAl is comprehensively investigated via off-axis holography. Finally, the electromagnetic properties, antioxidant properties, and residual magnetism at high temperatures of FeCoNiAl alloys are summarized in detail, providing new insights into the preparation of MAM operating at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Meaal-ogannic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

    Article  CAS  Google Scholar 

  2. Deng, J. S.; Li, S. M.; Zhou, Y. Y.; Liang, L. Y.; Zhao, B.; Zhang, X.; Zhang, R. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 2018, 509, 406–413.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, 10, 2303104.

    Article  CAS  Google Scholar 

  4. Zhang, Q. C.; Du, Z. J.; Ding, Z. Z.; Liu, Y.; Yue, J. L.; Huang, X. Z.; Chen, A. L. Clathrate-like porous graphene/TiO2 composite with strong dielectric polarization for electromagnetic microwave absorption. Appl. Phys. Lett. 2023, 122, 031901.

    Article  ADS  CAS  Google Scholar 

  5. Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6090-3.

  6. Li, D.; Liao, H. Y.; Kikuchi, H.; Liu, T. Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 2017, 9, 44704–44714.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomearane-e-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

    Article  Google Scholar 

  8. Chen, L.; Li, Y. B.; Zhao, B.; Liu, S. S.; Zhang, H. B.; Chen, K.; Li, M.; Du, S. Y.; Xiu, F. X.; Che, R. C. et al. Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss. Adv. Sci. 2023, 10, 2206877.

    Article  CAS  Google Scholar 

  9. Shu, J. C.; Yang, X. Y.; Zhang, X. R.; Huang, X. Y.; Cao, M. S.; Li, L.; Yang, H. J.; Cao, W. Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171.

    Article  CAS  Google Scholar 

  10. Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Cabbon 2017, 111, 722–732.

    CAS  Google Scholar 

  11. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  12. Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

    Article  CAS  Google Scholar 

  13. Ren, Y. J.; Wang, X.; Ma, J. X.; Zheng, Q.; Wang, L. J.; Jiang, W. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation. J. Mater. Sci. Technol. 2023, 132, 223–251.

    Article  CAS  Google Scholar 

  14. Liu, Z. Y.; Tian, H. L.; Xu, R. X.; Men, W. W.; Su, T.; Qu, Y. G.; Zhao, W.; Liu, D. Magnetic crystallite-decorated hollow multi-cavity carbon nanosheet spheres for superior electromagnetic absorption. Carbon 2023, 205, 138–150.

    Article  CAS  Google Scholar 

  15. Huang, W. H.; Wang, S.; Yang, X. F.; Zhang, X. X.; Zhang, Y. N.; Pei, K.; Che, R. C. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Crboon 2022, 195, 44–56.

    CAS  Google Scholar 

  16. Jin, L.; Wang, J. Q.; Wu, F.; Yin, Y. N.; Zhang, B. L. MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation. Carbon 2021, 182, 770–780.

    Article  CAS  Google Scholar 

  17. Zhan, B. B.; Hao, Y. L.; Qi, X. S.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6236-7.

  18. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

    Article  CAS  Google Scholar 

  19. Deng, J. S.; Zhang, X.; Zhao, B.; Bai, Z. Y.; Wen, S. M.; Li, S. M.; Li, S. Y.; Yang, J.; Zhang, R. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 2018, 6, 7128–7140.

    Article  CAS  Google Scholar 

  20. Ouyang, J.; He, Z. L.; Zhang, Y.; Yang, H. M.; Zhao, Q. H. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 2019, 11, 39304–39314.

    Article  CAS  PubMed  Google Scholar 

  21. Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

    Article  CAS  Google Scholar 

  22. Huang, M. Q.; Yu, X. F.; Wang, L.; Liu, J. W.; You, W. B.; Wang, M.; Che, R. C. Enhanced magnetic microwave absorption at low-frequency band by ferrite assembled microspheres with controlled components and morphologies. Small Struct. 2021, 2, 2100033.

    Article  CAS  Google Scholar 

  23. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  24. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.

    Article  CAS  Google Scholar 

  26. Huang, L. X.; Duan, Y. P.; Shi, Y. P.; Pang, H. F.; Zeng, Q. W.; Che, R. C. Novel broadband electromagnetic-wave absorption metasurfaces composed of C-doped FeCoNiSiAl high-entropy-alloy ribbons with hierarchical nanostructures. Compos. Part B: Eng. 2022, 244, 110182.

    Article  CAS  Google Scholar 

  27. Li, X.; Wu, Z. C.; You, W. B.; Yang, L. T.; Che, R. C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-MicroLett. 2022, 14, 73.

    ADS  CAS  Google Scholar 

  28. Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

    Article  ADS  CAS  Google Scholar 

  29. Zhang, C.; Yuan, J. H.; Wang, X.; Zheng, G. Z. Crystal structure, curie temperature, and electromagnetic absorption properties in FexCo30Ni60−xSi5Al5 (x = 30, 35, 40, 45) high entropy alloys. Mater. Res. Express 2021, 8, 106104.

    Article  ADS  Google Scholar 

  30. Zhou, H. R.; Jiang, L. W.; Zhu, S. Q.; Wang, L. L.; Hu, Y. F.; Zhang, X. F.; Wu, A. H. Excellent electromagnetic-wave absorbing performances and great harsh-environment resistance of FeCoNiCrxMn high entropy alloys. J. Alloys Compd. 2023, 936, 168282.

    Article  CAS  Google Scholar 

  31. Liu, X. J.; Duan, Y. P.; Guo, Y.; Pang, H. F.; Li, Z. R.; Sun, X. Y.; Wang, T. M. Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 2022, 14, 142.

    Article  ADS  CAS  Google Scholar 

  32. Yang, P. P.; Liu, Y.; Zhao, X. C.; Cheng, J. W.; Li, H. Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 2016, 31, 2398–2406.

    Article  ADS  CAS  Google Scholar 

  33. Zhang, L. M.; Jia, J.; Liang, H. S.; Chen, G. Facile synthesis of adjustable high-entropy alloy/polypyrrole electromagnetic wave absorber. J. Mater. Sci. Mater. Electron. 2021, 32, 26074–26085.

    Article  CAS  Google Scholar 

  34. Dai, G. H.; Deng, R. X.; Zhang, T.; Yu, Y.; Song, L. X. Quantitative evaluation of loss capability for in situ conductive phase enhanced microwave absorption of high-entropy transition metal oxides. Adv. Funct. Mater. 2022, 32, 2205325.

    Article  CAS  Google Scholar 

  35. Zhao, B.; Yan, Z. K.; Du, Y. Q.; Rao, L. J.; Chen, G. Y.; Wu, Y. Y.; Yang, L. T.; Zhang, J. C.; Wu, L. M.; Zhang, D. W. et al. High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 2023, 35, 2210243.

    Article  CAS  Google Scholar 

  36. Qin, L.; Liu, S.; Yang, J. F.; He, M.; Yu, J. Carbon nanotube modified hierarchical NiCo/porous nanocomposites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2023, 966, 171599.

    Article  CAS  Google Scholar 

  37. Zhang, C.; Luo, K. C.; Liu, J. W.; Zhang, H. B.; Xu, C. Y.; Zhang, R. X.; Cheng, Y. F.; Zhang, J. C.; Wu, L. M.; Che, R. C. Realizing optimized interfacial polarization and impedance matching with CNT-confined Co nanoparticles in hollow carbon microspheres for enhanced microwave absorption. J. Mater. Sci. Technol. 2024, 175, 1–9.

    Article  Google Scholar 

  38. Rajeevan, V.; Joseyphus, R. J. Structural and magnetic properties of Ni substituted FeCo alloy obtained through polyol process. J. Magn. Magn. Mater. 2022, 563, 170016.

    Article  CAS  Google Scholar 

  39. Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

    Article  CAS  Google Scholar 

  40. Peng, G. Y.; Zhou, J. T.; Tao, J. Q.; Wang, W. Z.; Liu, J.; Yao, J. R.; Liu, Y. J.; Yao, Z. J. Magnetic nanoparticle-modified hollow double-shell SiC@C@FeCo with excellent electromagnetic wave absorption. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6084-1.

  41. Huang, M. Q.; Wang, L.; Pei, K.; Li, B. X.; You, W. B.; Yang, L. T.; Zhou, G.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Heterogeneous interface engineering of bi-metal MOFs-derived ZnFe2O4-ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202308898.

  42. Xiang, L. L.; Darboe, A. K.; Luo, Z. H.; Qi, X. S.; Shao, J. J.; Ye, X. J.; Liu, C. S.; Sun, K.; Qu, Y. P.; Xu, J. et al. Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 215.

    Article  CAS  Google Scholar 

  43. Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nanomicro Lett 2021, 13, 47.

    ADS  PubMed  PubMed Central  Google Scholar 

  44. Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Chen, N.; Pan, X. F.; Guan, Z. J.; Zhang, Y. J.; Wang, K. J.; Jiang, J. T. Flower- like hierarchical Fe3O4-based heterostructured microspheres enabling superior electromagnetic wave absorption. Appl. Surf. Sci. 2024, 642, 158633.

    Article  CAS  Google Scholar 

  46. Xu, H. X.; He, Z. Z.; Li, Y. R.; Wang, Y. R.; Zhang, Z. W.; Dai, X. Q.; Xiong, Z. M.; Geng, W. C.; Liu, P. B. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 2023, 213, 118290.

    Article  CAS  Google Scholar 

  47. He, Z. Z.; Xu, H. X.; Shi, L. Z.; Ren, X. R.; Kong, J.; Liu, P. B. Hierarchical Co2P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small, in press, DOI: https://doi.org/10.1002/smll.202306253.

  48. Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2021YFA1200600), the National Natural Science Foundation of China (Nos. 52231007, 12327804, 22088101, 51725101, and T2321003), the Science and Technology Research Project of Jiangxi Provincial Department of Education (No. GJJ200338), Key Research Project of Zhejiang Lab (No. 2021PE0AC02), the “Chenguang Program” by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 21CGA04), and sponsored by Shanghai Sailing Program (No. 21YF1401800), and the Fund of Science and Technology on Surface Physics and Chemistry Laboratory (No. JCKYS2023120201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhen Zhu, Wenbin You or Renchao Che.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Lian, G., Zhu, G. et al. Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption. Nano Res. 17, 2079–2087 (2024). https://doi.org/10.1007/s12274-024-6468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6468-x

Keywords

Navigation