Skip to main content
Log in

Inhomogeneous Phase Effect of Smart Meta-Superconducting \(\hbox {MgB}_{2}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The inhomogeneous phase of a smart meta-superconductor has a great effect on its superconductivity. In this paper, the effect of concentration, dimensions, electroluminescence (EL) intensity, and distribution of the inhomogeneous phase on the superconducting critical temperature \((T_{C})\) has been systematically investigated. An ex situ solid sintering was utilized to prepare smart meta-superconducting \(\hbox {MgB}_{2}\) doped with six kinds of electroluminescent materials, such as \(\hbox {YVO}_{4}{:}\hbox {Eu}^{3+}\) and \(\hbox {Y}_{2}\hbox {O}_{3}{:}\hbox {Eu}^{3+}\) flakes. Elemental mappings through energy dispersive spectroscopy (EDS) show that the inhomogeneous phase is comparatively uniformly dispersed around the \(\hbox {MgB}_{2}\) particles; thus V, Y, and Eu were accumulated at a small area. The measurement results show that the optimum doping concentration of the meta-superconducting \(\hbox {MgB}_{2}\) is 2.0 wt%. The offset temperature (\(T_{C}^{{ off}}\)) of the sample doped with 2.0 wt% dopant A is 1.6 K higher than that of pure \(\hbox {MgB}_{2}\). The improvement in \(T_{C}^{{ off}}\) is likely related to the sizes, thickness, and EL intensity of the inhomogeneous phase of \(\hbox {MgB}_{2}\) smart meta-superconductor. This experiment provides a novel approach to enhance \(T_{C}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  ADS  Google Scholar 

  3. J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S.M. Loureiro, M.K. Haas, H.W. Zandbergen, R.J. Cava, Nature 410(6826), 343–345 (2001)

    Article  ADS  Google Scholar 

  4. H. Luo, C.M. Li, H.M. Luo, S.Y. Ding, J. Appl. Phys. 91(10), 7122–7124 (2002)

    Article  ADS  Google Scholar 

  5. R.J. Cava, H.W. Zandbergen, K. Inumaru, Physica C 385, 8–15 (2003)

    Article  ADS  Google Scholar 

  6. S.M. Kazakov, R. Puzniak, K. Rogacki, A.V. Mironov, N.D. Zhigadlo, J. Jun, C. Soltmann, B. Batlogg, J. Karpinski, Phys. Rev. B 71(2), 024533 (2005)

    Article  ADS  Google Scholar 

  7. A. Bianconi, Y. Busby, M. Fratini, V. Palmisano, L. Simonelli, M. Filippi, S. Sanna, F. Congiu, A. Saccone, M. Giovannini, S. De Negri, J. Supercond. Nov. Magn. 20(7), 495–501 (2007)

    Article  ADS  Google Scholar 

  8. O. de la Peña, A. Aguayo, R. de Coss, Phys. Rev. B 66(1), 012511 (2002)

    Article  ADS  Google Scholar 

  9. J. Kortus, O.V. Dolgov, R.K. Kremer, A.A. Golubov, Phys. Rev. Lett. 94(2), 027002 (2005)

    Article  ADS  Google Scholar 

  10. Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M.H. Zhu, Z.H. Han, X.L. Wang, B.L. Gu, Physica C 361, 91–94 (2001)

    Article  ADS  Google Scholar 

  11. M. Monni, M. Affronte, C. Bernini, D. Di Castro, C. Ferdeghini, M. Lavagnini, P. Manfrinetti, A. Orecchini, A. Palenzona, C. Petrillo, P. Postorino, A. Sacchetti, F. Sacchetti, M. Putti, Physica C 460–462, 598–599 (2007)

    Article  Google Scholar 

  12. A.V. Sologubenko, N.D. Zhigadlo, S.M. Kazakov, J. Karpinski, H.R. Ott, Phys. Rev. B 71(2), 020501 (2005)

    Article  ADS  Google Scholar 

  13. K. Rogacki, B. Batlogg, J. Karpinski, N.D. Zhigadlo, G. Schuck, S.M. Kazakov, P. Wägli, R. Puźniak, A. Wiśniewski, F. Carbone, A. Brinkman, D. van der Marel, Phys. Rev. B 73(17), 174520 (2006)

    Article  ADS  Google Scholar 

  14. A.V. Sologubenko, N.D. Zhigadlo, J. Karpinski, H.R. Ott, Phys. Rev. B 74(18), 184523 (2006)

    Article  ADS  Google Scholar 

  15. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Appl. Phys. Lett. 81(18), 3419–3421 (2002)

    Article  ADS  Google Scholar 

  16. J.H. Kim, S. Zhou, M.S.A. Hossain, A.V. Pan, S.X. Dou, Appl. Phys. Lett. 89(14), 142505 (2006)

    Article  ADS  Google Scholar 

  17. P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri, A. Saccone, Phys. Rev. B 65(2), 020507 (2001)

    Article  Google Scholar 

  18. T. Takenobu, T. Ito, D. Hieu Chi, K. Prassides, Y. Iwasa, Phys. Rev. B 64(13), 134513 (2001)

    Article  ADS  Google Scholar 

  19. A. Bianconi, S. Agrestini, D. Di Castro, G. Campi, G. Zangari, N.L. Saini, A. Saccone, S. De Negri, M. Giovannini, G. Profeta, A. Continenza, G. Satta, S. Massidda, A. Cassetta, A. Pifferi, M. Colapietro, Phys. Rev. B 65(17), 174515 (2002)

    Article  ADS  Google Scholar 

  20. J.Q. Li, L. Li, F.M. Liu, C. Dong, J.Y. Xiang, Z.X. Zhao, Phys. Rev. B 65(13), 134426 (2002)

    Article  ADS  Google Scholar 

  21. W. Mickelson, J. Cumings, W.Q. Han, A. Zettl, Phys. Rev. B 65(5), 052505 (2002)

    Article  ADS  Google Scholar 

  22. R.H. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. Rev. Lett. 92(21), 217003 (2004)

    Article  ADS  Google Scholar 

  23. H. Liu, X.P. Zhao, Y. Yang, Q.W. Li, J. Lv, Adv. Mater. 20(11), 2050–2054 (2008)

    Article  Google Scholar 

  24. Y.P. Qiao, X.P. Zhao, Y.Y. Su, J. Mater. Chem. 21(2), 394–399 (2011)

    Article  Google Scholar 

  25. X.P. Zhao, J. Mater. Chem. 22(19), 9439–9449 (2012)

    Article  Google Scholar 

  26. W.T. Jiang, Z.L. Xu, Z. Chen, X.P. Zhao, J. Funct. Mater 38, 157–160 (2007) (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm

  27. S.H. Xu, Y.W. Zhou, X.P. Zhao, Mater. Rev. 21, 162–166 (2007) (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm

  28. Z.W. Zhang, S. Tao, G.W. Chen, X.P. Zhao, J. Supercond. Nov. Magn. 29(5), 1159–1162 (2016)

    Article  Google Scholar 

  29. S. Tao, Y.B. Li, G.W. Chen, X.P. Zhao, J. Supercond. Nov. Magn. 30(6), 1405–1411 (2017)

    Article  Google Scholar 

  30. D.A. Kirzhnits, E.G. Maksimov, D.I. Khomskii, J. Low Temp. Phys. 10(1–2), 79–93 (1973)

    Article  ADS  Google Scholar 

  31. I.I. Smolyaninov, V.N. Smolyaninova, Adv. Condens. Matter Phys. 91(9), 479635 (2014)

    Google Scholar 

  32. V.N. Smolyaninova, B. Yost, K. Zander, M.S. Osofsky, H. Kim, S. Saha, R.L. Greene, I.I. Smolyaninov, Sci. Rep. 4, 7321 (2014)

    Article  ADS  Google Scholar 

  33. V.N. Smolyaninova, K. Zander, T. Gresock, C. Jensen, J.C. Prestigiacomo, M.S. Osofsky, I.I. Smolyaninov, Sci. Rep. 5, 15777 (2015)

    Article  ADS  Google Scholar 

  34. W.C. Qi, G.W. Chen, C.S. Yang, C.R. Luo, X.P. Zhao, J. Mater. Sci.: Mater. Electron. 28(13), 9237–9244 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, H., Qi, W. et al. Inhomogeneous Phase Effect of Smart Meta-Superconducting \(\hbox {MgB}_{2}\). J Low Temp Phys 191, 217–227 (2018). https://doi.org/10.1007/s10909-018-1865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1865-8

Keywords

Navigation