Skip to main content
Log in

The Effect of Inhomogeneous Phase on the Critical Temperature of Smart Meta-superconductor MgB2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ∼ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Yamashita, T., Buzea, C.: Supercond. Sci. Technol. 14(11), R115–R146 (2001)

    Article  Google Scholar 

  3. Slusky, J.S., Rogado, N., Regan, K.A., Hayward, M.A., Khalifah, P., He, T., Inumaru, K., Loureiro, S.M., Haas, M.K., Zandbergen, H.W., Cava, R.J.: Nature 410(6826), 343–345 (2001)

    Article  ADS  Google Scholar 

  4. Luo, H., Li, C.M., Luo, H.M., Ding, S.Y.: J. Appl. Phys. 91(10), 7122 (2002)

    Article  ADS  Google Scholar 

  5. Cava, R.J., Zandbergen, H.W., Inumaru, K.: Phys. C. 385, 8–15 (2003)

    Article  ADS  Google Scholar 

  6. Kazakov, S.M., Puzniak, R., Rogacki, K., Mironov, A.V., Zhigadlo, N.D., Jun, J., Soltmann, C., Batlogg, B., Karpinski, J.: Phys. Rev. B. 71(2), 024533 (2005)

    Article  ADS  Google Scholar 

  7. Bianconi, A., Busby, Y., Fratini, M., Palmisano, V., Simonelli, L., Filippi, M., Sanna, S., Congiu, F., Saccone, A., Giovannini, M., De Negri, S.: J. Supercond. Nov. Magn. 20(7), 495–501 (2007)

    Article  ADS  Google Scholar 

  8. Monni, M., Affronte, M., Bernini, C., Di Castro, D., Ferdeghini, C., Lavagnini, M., Manfrinetti, P., Orecchini, A., Palenzona, A., Petrillo, C., Postorino, P., Sacchetti, A., Sacchetti, F., Putti, M.: Physica C 460–462, 598–599 (2007)

    Article  ADS  Google Scholar 

  9. Zhao, Y.G., Zhang, X.P., Qiao, P.T., Zhang, H.T., Jia, S.L., Cao, B.S., Zhu, M.H., Han, Z.H., Wang, X.L., Gu, B.L.: Physica C 361(2), 91–94 (2001)

    Article  ADS  Google Scholar 

  10. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngd, I.: Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  11. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Trans, I.: Microw. Theory Tech. 47, 2075 (1999)

    Article  Google Scholar 

  12. Shelby, R.A., Smith, D.R., Schultz, S.: Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  13. Liu, H., Zhao, X.P., Yang, Y., Li, Q.W., Lv, J.: Adv. Mater. 20(11), 2050–2054 (2008)

    Article  Google Scholar 

  14. Qiao, Y.P., Zhao, X.P., Su, Y.Y.: J. Mater. Chem. 21(2), 394–399 (2011)

    Article  Google Scholar 

  15. Zhao, X.P.: J. Mater. Chem. 22(19), 9439–9449 (2012)

    Article  Google Scholar 

  16. Jiang, W.T., Xu, Z.L., Chen, Z., Zhao, X.P.: J. Funct. Mater. 38, 157–160 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm

    Google Scholar 

  17. Xu, S.H., Zhou, Y.W., Zhao, X.P.: Mater. Rev. 21, 162–166 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm

    Google Scholar 

  18. Zhang, Z.W., Tao, S., Chen, G.W., Zhao, X.P.: J. Supercond. Nov. Magn. 29(5), 1159–1162 (2016)

    Article  Google Scholar 

  19. Tao, S., Li, Y.B., Chen, G.W., Zhao, X.P.: J. Supercond. Nov. Magn. 30, 1405–1411 (2016)

    Article  Google Scholar 

  20. Smolyaninov, I.I., Smolyaninova, V.N.: Adv. Condens. Matter Phys. 2014, 479635 (2014)

    Article  Google Scholar 

  21. Smolyaninova, V.N., Yost, B., Zander, K., Osofsky, M.S., Kim, H., Saha, S., Greene, R.L., Smolyaninov, I.I.: Sci. Report. 4, 7321 (2014)

    Article  ADS  Google Scholar 

  22. Smolyaninova, V.N., Zander, K., Gresock, T., Jensen, C., Prestigiacomo, J.C., Osofsky, M.S., Smolyaninov, I.I.: Sci. Report. 5, 15777 (2015)

    Article  ADS  Google Scholar 

  23. Smolyaninov, I.I., Smolyaninova, V.N.: Phys. Rev. B. 91, 094501 (2015)

    Article  ADS  Google Scholar 

  24. Smolyaninova, V.N. et al.: Sci. Report. 6, 34140 (2016)

    Article  ADS  Google Scholar 

  25. Wang, S.S., Ning, X.S., J, M.S., Li, H., Chu, X.H.: Cryo. & Supercond. 40(8), 1–6 (2012). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201208002.htm

    Google Scholar 

  26. Li, J.S.: Physics Examination and Testing 28, 3 (2010). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-WLCS201003006.htm

    ADS  Google Scholar 

  27. Ye, J.T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H.T., Shimotani, H., Iwasa, Y.: Nat. Mater. 9, 125–128 (2010)

    Article  ADS  Google Scholar 

  28. Ye, J.T., Zhang, Y.J., Akashi, R., Bahramy, M.S., Arita, R., Iwasa, Y.: Science 338(6111), 1193–1196 (2012)

    Article  ADS  Google Scholar 

  29. Chen, G.W., Li, Y.B., Qi, W.C., Yang, C.S., Zhao, X.P.: J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8213-7

    Google Scholar 

  30. Qi, W.C., Chen, G.W., Yang, C.S., Luo, C.R., Zhao, X.P.: J. Mater. Sci.: Mater. Electron. 28, 9237–9244 (2017)

    Google Scholar 

  31. Cai, Q., Liu, Y.C., Ma, Z.Q., Dong, Z.: J. Supercond. Nov. Magn. 25, 357 (2012)

    Article  Google Scholar 

  32. Igor, I.S., Vera, N.S.: Phys. Rev. B. 93, 184510 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, Y., Chen, G. et al. The Effect of Inhomogeneous Phase on the Critical Temperature of Smart Meta-superconductor MgB2. J Supercond Nov Magn 31, 3175–3182 (2018). https://doi.org/10.1007/s10948-018-4599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4599-6

Keywords

Navigation