Skip to main content
Log in

Identifying the functional properties and characterizations of PVA/PVP polymer blends incorporating CdS/ZnO core–shell (ZCS) fillers for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2024

This article has been updated

Abstract

This paper examines composite materials based on polymer blends (PBs) of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Hydrothermal synthesis was used to prepare CdS/ZnO core–shell nanostructures. The casting method was used to synthesize PVA-PVP@CZS PB nanostructures. These materials were characterized using a variety of analytical techniques, as indicated in our statement. XRD characterization revealed that CZS crystallized into hexagonal wurtzite ZnO and cubic CdS. The optical band gap was calculated via UV–Vis–NIR spectra, which decreased as increasing wavelengths. The reported optical band gaps in the present work are truly comparable to other studies of different types of blend polymer films with different fillers and dopants. The frequency-dependent composite films were used to determine the AC conductivity of the produced PB nanostructures. The AC conductivity of the compound follows Jonscher power law, it can provide valuable insights into its electrical transport properties. When increasing the content of ZCS fillers, both (Zʹ) and (Z") changed and decreased with the applied frequency indicating a weakening of the opposition to AC flow within the material or circuit. Equivalent circuits were used to analyze the impedance spectra. The low values of series resistance at high-frequency regions indicate that the films are low-loss materials. The PVA-PVP@ZCS PB nanostructures were also successfully prepared and exhibited improved functional properties, such as enhanced electrical conductivity and optical transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figs. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All authors contributed that there is no associated data, or the data will be not deposited. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014). https://doi.org/10.1016/j.memsci.2013.12.022

    Article  CAS  Google Scholar 

  2. N.B. Rithin Kumar, A. Santhosha Acharya, B.M. Alhadhrami, S.C. Prasanna, Sangeetha Bhat Gurumurthy, Role of TiO2/ZnO nanofillers in modifying the properties PMMA nanocomposites for optical device applications. Iran J. Sci. Technol. Trans. Sci. (2021). https://doi.org/10.1007/s40995-021-01183-4

    Article  Google Scholar 

  3. S. Jambaladinni, J.S. Bhat, Enrichment a study of structural, optical and dielectric properties of Mowiol 4–88 (PVA) filled Zno nanocomposites. Walailak J. Sci. & Tech. 18(14), 21445 (2021). https://doi.org/10.48048/wjst.2021.21445

    Article  Google Scholar 

  4. E.M. Abdelrazek, G.M. Asnag, A.H. Oraby, A.M. Abdelghany, A.M. Alshehari, M.S. Gumaan, Structural, optical, thermal, morphological and electrical studies of PEMA/PMMA blend filled with CoCl2 and LiBr as mixed filler. J. Electron. Mater. 49, 6107–6122 (2020). https://doi.org/10.1007/s11664-020-08342-0

    Article  CAS  Google Scholar 

  5. E. Malka, S. Margel, Engineering of PVA/PVP hydrogels for agricultural applications. Gels 9, 895 (2023). https://doi.org/10.3390/gels9110895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H.M. Zidan, N.A. El-Ghamaz, A.M. Abdelghany, A. Lotfy, Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int. J. Electrochem. Sci. 11, 9041–9056 (2016). https://doi.org/10.20964/2016.11.08

    Article  CAS  Google Scholar 

  7. A.Y. Yassin, Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J. Mater. Sci. Mater. Electron. 31, 19447–19463 (2020). https://doi.org/10.1007/s10854-020-04478-1

    Article  CAS  Google Scholar 

  8. R.M.L. Helberg, Z. Dai, L. Ansaloni, L. Deng, PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: synergistic enhancement of CO2 separation performance. Green Energy Environ. 5, 59–68 (2020). https://doi.org/10.1016/j.gee.2019.10.001

    Article  Google Scholar 

  9. K. Omri, R. Lahouli, L. El Mir, Microstructure and electrical properties of silica- Zn2SiO4-Mn glass-ceramics as composite for optoelectronic devices. Results Phys. 12, 2141–2145 (2019). https://doi.org/10.1016/j.rinp.2019.02.015

    Article  Google Scholar 

  10. Ahmed M. El-Mahalawy, Mahmoud M. Abdrabou, S.A. Mansour, Fayez M. Ali, appreciably optimization of PVA/PVP nanocomposite blend for enhanced optoelectronics properties and multifunctional applications. Phys. B 650, 414586 (2023). https://doi.org/10.1016/j.physb.2022.414586

    Article  CAS  Google Scholar 

  11. Z.K. Heiba, A.M. El-naggar, M.B. Mohamed, A.M. Kamal, M.M. Osman, A.A. Albassam, G. Lakshminarayana, Modifications of the structural and optical properties of PVA/PVP loaded with Zn0.75-xCd0.25VxS nano powders. Opt. Quant. Electron. 54, 452 (2022). https://doi.org/10.1007/s11082-022-03827-0

    Article  CAS  Google Scholar 

  12. V. Siva, D. Vanitha, A. Murugan, A. Shameem, S. Asath Bahadur, Studies on structural and dielectric behaviour of PVA/PVP/SnO nanocomposites. Composites Commun 23, 100597 (2021). https://doi.org/10.1016/j.coco.2020.100597

    Article  Google Scholar 

  13. K. Omri, F. Alharbi, Microstructure and luminescence thermometry of transparent Mn–SZO glass ceramics with highly efficient Mn2+. J. Mater. Sci. 9, 12466–12474 (2021). https://doi.org/10.1007/s10854-021-05880-z

    Article  CAS  Google Scholar 

  14. B. Yalagala, S. Khandelwal, J. Deepika, S. Badhulika, wirelessly destructible MgO PVP-graphene composite based flexible transient memristor for security applications. Mater. Sci. Semicond. Process. 104, 104673 (2019). https://doi.org/10.1016/j.mssp.2019.104673

    Article  CAS  Google Scholar 

  15. J.X. Chan, J.F. Wong, M. Petrů, A. Hassan, U. Nirmal, N. Othman, R.A. Ilyas, Effect of nanofillers on tribological properties of polymer nanocomposites: a review on recent development. Polymers 13, 2867 (2021). https://doi.org/10.3390/polym13172867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H.A.H. Alzahrani, CuO and MWCNTs nanoparticles filled PVA–PVP nanocomposites: morphological, optical, thermal, dielectric, and electrical characteristics. J. Inorg. Organomet. Polym. 32, 1913–1923 (2022). https://doi.org/10.1007/s10904-022-02233-z

    Article  CAS  Google Scholar 

  17. I.S. Elashmawi, Nadia H. Elsayed, Fatma A. Altalhi, The changes of spectroscopic, thermal, and electrical properties of PVDF/PEO containing lithium nanoparticles. J. Alloy. Comp. 617, 877–83 (2014). https://doi.org/10.1016/j.jallcom.2014.08.088

    Article  CAS  Google Scholar 

  18. E.M. Abdelrazek, A.M. Abdelghany, A. ElShahawy, A.A. Al-Muntaser, FTIR and UV/Vis. spectroscopy: a key for miscibilityinvestigation of PVC/PMMA polymer blend. Middle East J. Appl. Sci. 5, 36–44 (2015)

    Google Scholar 

  19. K. Omri, I. Najeh, S. Mnefgui, N. Alonizan, S. Gouadria, Microstructure, AC conductivity and complex modulus analysis of Ca-ZnO nanoparticles for potential optoelectronic applications. Mater. Sci. Eng. B 297, 116738 (2023). https://doi.org/10.1016/j.mseb.2023.116738

    Article  CAS  Google Scholar 

  20. M. Sharma, P. Jeevanandam, Synthesis, characterization, and studies on optical properties of hierarchical ZnO-CdS nanocomposites. Mater. Res. Bull. 47, 1755–1761 (2012). https://doi.org/10.1016/j.materresbull.2012.03.044

    Article  CAS  Google Scholar 

  21. K. Yuan, L. Chen, F. Li, Y. Chen, Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. J. Mater. Chem. C 2, 1018–1027 (2014). https://doi.org/10.1039/C3TC32071E

    Article  CAS  Google Scholar 

  22. M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J. Alloy. Compd. 590, 507–513 (2014). https://doi.org/10.1016/j.jallcom.2013.12.158

    Article  CAS  Google Scholar 

  23. M. Misra, P. Kapur, C. Ghanshyam, M.L. Singla, ZnO@CdS core-shell thin film: fabrication and enhancement of exciton lifetime by CdS nanoparticle. J. Mater. Sci. 24, 3800–3804 (2013). https://doi.org/10.1007/s10854-013-1321-0

    Article  CAS  Google Scholar 

  24. M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells. Appl. Surf. Sci. 273, 391–398 (2013). https://doi.org/10.1016/j.apsusc.2013.02.050

    Article  CAS  Google Scholar 

  25. X. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods. Int. J. Hydrogen Energy 35, 8199–8205 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.091

    Article  CAS  Google Scholar 

  26. Y. Chai, J. Lu, L. Li, D. Li, M. Li, J. Liang, TEOA-induced: in situ formation of wurtzite and zinc-blende CdS heterostructures as a highly active and long-lasting photocatalyst for converting CO2 into solar fuel. Catal. Sci. Technol. 8, 2697–2706 (2018). https://doi.org/10.1039/C8CY00274F

    Article  CAS  Google Scholar 

  27. P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles. SN Appl. Sci. 1, 633 (2019). https://doi.org/10.1007/s42452-019-0642-x

    Article  CAS  Google Scholar 

  28. S. Khanchandani, S. Kundu, A. Patra, Ashok K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods. J. Phys. Chem. C 116, 23653–23662 (2012). https://doi.org/10.1021/jp3083419

    Article  CAS  Google Scholar 

  29. E. Usoviene, N. Petrasauskiene, G. Jakubauskas, E. Paluckiene, Influence of the cadmium sulfide chemical bath deposition temperature on cadmium sulfide/zinc oxide thin films. Coatings 13, 1197 (2023). https://doi.org/10.3390/coatings13071197

    Article  CAS  Google Scholar 

  30. A. Kar, A. Datta, A. Patra, Fabrication and optical properties of core/shell CdS/LaPO4: Eu nanorods. J. Mater. Chem. 20, 916–922 (2010). https://doi.org/10.1039/B915739E

    Article  CAS  Google Scholar 

  31. H. Ma, T. Shi, Q. Song, synthesis, and characterization of novel PVA/SiO2-TiO2 hybrid fibers. Fibers 2, 275–284 (2014). https://doi.org/10.3390/fib2040275

    Article  Google Scholar 

  32. D.W. Chae, Y.W. Kim, E.J. Lee, B.C. Kim, Effects of swelling conditions on the superstructure of PVA films during the wet drawing process. Text. Sci. Eng. 53, 165–170 (2016). https://doi.org/10.12772/TSE.2016.53.165

    Article  CAS  Google Scholar 

  33. S. Kumaraswamy, G. Babaladimath, V. Badalamoole, S.H. Mallaiah, Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites. Adv. Mater. Lett. 8(1), 02–07 (2017). https://doi.org/10.5185/amlett.2017.6819

    Article  CAS  Google Scholar 

  34. I.S. Elashmawi, A.A. Menazeab, Different time’s Nd: YAG laser irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J. Mater. Res. Technol. 8(2), 1944–1951 (2019). https://doi.org/10.1016/j.jmrt.2019.01.011

    Article  CAS  Google Scholar 

  35. F.M. Ali, R.M. Kershi, Synthesis and characterization of La3+ ions incorporated (PVA/PVP) polymer composite films for optoelectronics devices. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-019-02793-w

    Article  Google Scholar 

  36. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126, 335 (2020). https://doi.org/10.1007/s00339-020-03514-5

    Article  CAS  Google Scholar 

  37. P. Dhatarwal, R.J. Sengwa, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B 613, 412989 (2021). https://doi.org/10.1016/j.physb.2021.412989

    Article  CAS  Google Scholar 

  38. S.S. Alharthi, M.G. Althobaiti, Ali A. Alkathiri, Essam E. Ali, A. Badawi, Exploring the functional properties of PVP/PVA blend incorporated with non-stoichiometric SnS for optoelectronic devices. J. Taibah Univ. Sci. 16(1), 317–329 (2022). https://doi.org/10.1080/16583655.2022.2045766

    Article  Google Scholar 

  39. S.B. Aziz, OGh. Abdullah, A.M. Hussein, R.T. Abdulwahid, M.A. Rasheed, H.M. Ahmed, S.W. Abdalqadir, A.R. Mohammed, Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study. J. Mater. Sci. Mater. Electron. 28, 7473–7479 (2017). https://doi.org/10.1007/s10854-017-6437-1

    Article  CAS  Google Scholar 

  40. D.Q. Muheddin, S.B. Aziz, P.A. Mohammed, Variation in the optical properties of PEO-based composites via a green metal complex: macroscopic measurements to explain microscopic quantum transport from the valence band to the conduction band. Polymers 15, 771 (2023). https://doi.org/10.3390/polym15030771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S.R. Anwar, K.K. Ahmed, G.S. Ezat, S.J. Jamal, S.S. Osman, R.J. Arif, D.Q. Muheddin, S.B. Aziz, Optical and microscopic characterizations of polyethylene oxides (PEO) doped with nickel nitrate (NiNO3) transition metal salt. Opt. Mater. 15, 114435 (2023). https://doi.org/10.1016/j.optmat.2023.114435

    Article  CAS  Google Scholar 

  42. S.B. Aziz, O. Gh Abdullah, M.A. Rasheed, A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J. Appl. Polym. Sci. 134, 44847 (2017). https://doi.org/10.1002/app.44847

    Article  CAS  Google Scholar 

  43. D. Coskun, B. Gunduz, M.F. Coskun, Synthesis, characterization, and significant optoelectronic parameters of 1-(7-methoxy-1-benzofuran-2-yl) substituted chalcone derivatives. J. Mol. Struct. 1178, 261–267 (2019). https://doi.org/10.1016/j.molstruc.2018.10.043

    Article  CAS  Google Scholar 

  44. K.K. Ahmed, D.Q. Muheddin, P.A. Mohammed, G.S. Ezat, A.R. Murad, B.Y. Ahmed, S.A. Hussen, T.Y. Ahmed, S.M. Hamad, OGh. Abdullah, S.B. Aziz, A brief review on optical properties of polymer composites: insights into light-matter interaction from classical to quantum transport point of view. Results Phys. 56, 107239 (2024). https://doi.org/10.1016/j.rinp.2023.107239

    Article  Google Scholar 

  45. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal, and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10(2), 607–613 (2010). https://doi.org/10.1016/j.cap.2009.08.005

    Article  Google Scholar 

  46. O.G. Abdullah, D.R. Saber, S.A. Taha, The optical characterization of polyvinyl alcohol: cobalt nitrate solid polymer electrolyte films. Adv. Mater. Lett. 6, 153–157 (2015). https://doi.org/10.5185/amlett.2015.5687

    Article  CAS  Google Scholar 

  47. A.A.A. Ahmed, A.M. Al-Hussam, A.M. Abdulwahab, A.N.A.A. Ahmed, The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Mater. Sci. 5(3), 533–542 (2018). https://doi.org/10.3934/matersci.2018.3.533

    Article  CAS  Google Scholar 

  48. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte. Results Phys. 6, 1103–1108 (2016). https://doi.org/10.1016/j.rinp.2016.11.050

    Article  Google Scholar 

  49. F.F. Muhammad, S.B. Aziz, S.A. Hussein, Effect of the dopant salt on the optical parameters of PVA: NaNO3 solid polymer electrolyte. J. Mater. Sci. Mater. Electron. 26, 521–529 (2015). https://doi.org/10.1007/s10854-014-2430-0

    Article  CAS  Google Scholar 

  50. Y. Ahmed, A.-R. Yassin, E.M. Mohamed, M.A. Abdelrazek, M. Morsi, Amr Abdelghany, Structural investigation and enhancement of optical, electrical, and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J. Mater. Res. Technol. 8(1), 1111–1120 (2019). https://doi.org/10.1016/j.jmrt.2018.08.005

    Article  CAS  Google Scholar 

  51. L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater. Nanotechnol. 1, 17 (2011). https://doi.org/10.5772/50959

    Article  Google Scholar 

  52. K.R. Nemade, S.A. Waghuley, Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int. J. Met. 2014, 4 (2014). https://doi.org/10.1155/2014/389416

    Article  CAS  Google Scholar 

  53. A. Hashim, Q. Hadi, Structural, electrical, and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low-cost humidity sensors. J. Mater. Sci. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  54. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. 26(10), 8022–8028 (2015). https://doi.org/10.1007/s10854-015-3457-6

    Article  CAS  Google Scholar 

  55. S.B. Aziz, A.R. Mariwan, M.A. Hameed, Synthesis of polymer nanocomposites based on [methyl cellulose](1–x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 9, 194 (2017). https://doi.org/10.3390/polym9060194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  57. A. MBrza, S. B. Aziz, H. Anuar, M. H. F. Al Hazza, From green remediation to polymer hybrid fabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019). https://doi.org/10.3390/ijms20163910

    Article  CAS  Google Scholar 

  58. K.K. Ahmed, S.A. Hussen, S.B. Aziz, Transferring the wide band gap chitosan: POZ-based polymer blends to small optical energy band gap polymer composites through the inclusion of green synthesized Zn2+-PPL metal complex. Arab. J. Chem. 15, 103913 (2022). https://doi.org/10.1016/j.arabjc.2022.103913

    Article  CAS  Google Scholar 

  59. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP](1–x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semicond. Process. 71, 197–203 (2017). https://doi.org/10.1016/j.mssp.2017.05.035

    Article  CAS  Google Scholar 

  60. E.M. Abdelrazek, A.M. Abdelghany, A.A. Aldhabi, Influence of manganese chloride filler on optical and structural properties of PVA/PVP films. MSAIJ 10(1), 1–11 (2013)

    Google Scholar 

  61. S.S. Alharthi, Ali Badawi, Tailoring the linear and nonlinear optical characteristics of PVA/PVP polymeric blend using Co0.9Cu0.1S nanoparticles for optical and photonic applications. Opt. Mater. 127, 112255 (2022). https://doi.org/10.1016/j.optmat.2022.112255

    Article  CAS  Google Scholar 

  62. A.M. El-Naggar, S.Z. Brnawi, A.M. Kamal, A.A. Albassam, Z.K. Heiba, M.B. Mohamed, Structural, optical, and electrical parameters of doped PVA/PVP blend with TPAI or THAI salt. Polymers 15, 2661 (2023). https://doi.org/10.3390/polym15122661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. A. Bijanu, G. Rajak, R. Paulose, R. Arya, V. Agrawal, V.S. Gowri, M.A. Khan, S.T. Salammal, D. Mishra, Flexible, chemically bonded Bi-PVA–PVP composite for enhanced diagnostic X-ray shielding applications. J. Inorg. Organomet. Polym. 33, 2279–2291 (2023). https://doi.org/10.1007/s10904-023-02662-4

    Article  CAS  Google Scholar 

  64. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, M.M. Osman, A.A. Albassam, G. Lakshminarayana, Improvement of the optical characteristics of PVA/PVP blend with different concentrations of SnS2/Fe. J. Vinyl Addit. Technol. 28, 82–93 (2022). https://doi.org/10.1002/vnl.21868

    Article  CAS  Google Scholar 

  65. M.I. Mohammed, A. Bouzidi, H.Y. Zahran, Mohammed Jalalah, Farid A. Harraz, I.S. Yahia, Ammonium iodide salt-doped polyvinyl alcohol polymeric electrolyte for UV-shielding filters: synthesis, optical and dielectric characteristics. J. Mater. Sci. 32, 4416–4436 (2021). https://doi.org/10.1007/s10854-020-05184-8

    Article  CAS  Google Scholar 

  66. M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, H. Elhosiny Ali, Study the impact of terbium additions in the microstructure, optical and electrical properties of polyvinyl alcohol. Mater. Res. Express 6(12), 125321 (2019). https://doi.org/10.1088/2053-1591/ab56d8

    Article  CAS  Google Scholar 

  67. H. Elhosiny Ali, Y. Khairy, Facile synthesis, structure, AFM, thermal, and optical analysis of BiI3/PVAL nanocomposite films for laser CUT-OFF optical devices. Vacuum 180, 109640 (2020). https://doi.org/10.1016/j.vacuum.2020.109640

    Article  CAS  Google Scholar 

  68. A. Bouzidi, W. Jilani, I.S. Yahia, H.Y. Zahran, M.A. Assiri, Optical analysis and UV-blocking filter of cadmium iodide doped polyvinyl alcohol polymeric composite films: synthesis and dielectric properties. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01534-5

    Article  Google Scholar 

  69. S.B. Aziz, Occurrence of electrical percolation threshold and observation of phase transition in Chitosan(1–x): AgIx (0.05≤x≤0.2)-based ion-conducting solid polymer composites. Appl. Phys. A 122, 706 (2016). https://doi.org/10.1007/s00339-016-0235-0

    Article  CAS  Google Scholar 

  70. S.B. Aziz, R.M. Abdullah, M.A. Rasheed, H.M. Ahmed, Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to the ion transport mechanism. Polymers 9, 338 (2017). https://doi.org/10.3390/polym9080338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. Bouzidi, W. Jilani, H. Guermazi, I.S. Yahia, H.Y. Zahran, G.B. Sakr, the effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: optoelectrical performance. J. Mater. Sci. 30, 11799–11806 (2019). https://doi.org/10.1007/s10854-019-01552-1

    Article  CAS  Google Scholar 

  72. W. Jilani, A. Bouzidi, I.S. Yahia, H. Guermazi, H.Y. Zahran, G. Saker, Effect of organic inorganics on structural properties, linear optics, and impedance spectroscopy of methyl orange (C.I. acid orange 52) doped polyvinyl alcohol composite thin films. J. Mater. Sci. 29(16446), 16453 (2018). https://doi.org/10.1007/s10854-018-9736-2

    Article  CAS  Google Scholar 

  73. T. Abdel-Baset, M. Elzayat, S. Mahrous, characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int. J. Polym. Sci. 2016, 13 (2016). https://doi.org/10.1155/2016/1707018

    Article  CAS  Google Scholar 

  74. E. Salim, A.E. Tarabiah, The influence of NiO nanoparticles on structural, optical and dielectric properties of CMC/PVA/PEDOT:PSS nanocomposites. J. Inorg. Organomet. Polym. 33, 1638–1645 (2023). https://doi.org/10.1007/s10904-023-02591-2

    Article  CAS  Google Scholar 

  75. O. Folorunso, M.O. Onibonoje, Y. Hamam, R. Sadiku, S.S. Ray, Fabrication and model characterization of the electrical conductivity of PVA/PPy/rGO nanocomposite. Molecules 27, 3696 (2022). https://doi.org/10.3390/molecules27123696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S.S. More, R.J. Dhokane, S.V. Mohril, Study on structural characterization and dielectric properties of PVA-TiO2 composite. IOSR J. Appl. Phys. 8(3), 28–32 (2016). https://doi.org/10.9790/4861-0803032832

    Article  Google Scholar 

  77. D.K. Rana, S.K. Singh, S.K. Kundu, R.J. Choudhary, S. Basu, Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films. Bull. Mater. Sci. 41, 92 (2018). https://doi.org/10.1007/s12034-018-1608-0

    Article  CAS  Google Scholar 

  78. H.E.A. El-Sayed, H.A.M. Ali, G.F. Salem, M.A. Mahmoud, Characteristics of dielectric behavior and AC electrical conductivity of bulk antimony sulfide (Sb2S3). Arab J. Nucl. Sci. Appl. 53, 93–101 (2020). https://doi.org/10.21608/ajnsa.2020.27596.1344

    Article  Google Scholar 

  79. S.B. Aziz, Z.H.Z. Abidin, Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation. J. Soft. Matter. 2013, 8 (2013). https://doi.org/10.1155/2013/323868

    Article  Google Scholar 

  80. H.T. Ahmed, O.G. Abdullah, Structural and ionic conductivity characterization of PEO:MC-NH4I PC polymer blend electrolytes-based films. Results Phys. 16, 102861 (2020). https://doi.org/10.1016/j.rinp.2019.102861

    Article  Google Scholar 

  81. J. Lee, Y. Yun, S.H. Lee, J. Hwang, Numerical characterization for electrical conductivity of two-dimensional nanocomposite systems with conducting fiber fillers. Materials (Basel) 13, 2410 (2020). https://doi.org/10.3390/ma13102410

    Article  CAS  PubMed  Google Scholar 

  82. H. AlFannakh, S.S. Ibrahim, The AC conductivity and dielectric permittivity for PVA-treated MWCNT electrolyte composite. J. Mater. Sci. Mater. Electron. 33, 24137–24150 (2022). https://doi.org/10.1007/s10854-022-09092-x

    Article  CAS  Google Scholar 

  83. E. Elgazzar, A. Tataroğlu, A.A. Al-Ghamdi, Y. Al-Turki, W.A. Farooq, F. El-Tantawy, F. Yakuphanoglu, Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Appl. Phys. A 122, 617 (2016). https://doi.org/10.1007/s00339-016-0148-y

    Article  CAS  Google Scholar 

  84. W. Jilani, A. Bouzidi, F.F. Al-Harbi, A. Almahri, H. Guermazi, I.S. Yahia, Dysprosium ion effect on the structural, optical, and dielectric characteristics of epoxy resin polymer composite panels for use as a transducer material. J. Mater. Sci. 33, 16899–16914 (2022). https://doi.org/10.1007/s10854-022-08569-z

    Article  CAS  Google Scholar 

  85. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1993)

    Google Scholar 

  86. A. Bouzidi, W. Jilani, H. Guermazi, I.S. Yahia, H.Y. Zahran, G.B. Sakr, The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance. J. Mater. Sci.-Mater. El. 30, 11799–11806 (2019). https://doi.org/10.1007/s10854-019-01552-1

    Article  CAS  Google Scholar 

  87. A.TMd. Yusof, R. Idris, H.S. Shari, Conductivity study of diethylene glycol dibutyl ether (BDG) plasticizer on epoxidized natural rubber-50 (ENR50) polymer-based electrolyte system. Mater. Today 16, 1654–1660 (2019). https://doi.org/10.1016/j.matpr.2019.06.031

    Article  CAS  Google Scholar 

  88. N.K. Jyothi, K.K.V. Ratnam, P.N. Murthy, K.V. Kumar, Electrical studies of gel polymer electrolyte based on PAN for electrochemical cell applications. Mater. Today 3, 21–30 (2016). https://doi.org/10.1016/j.matpr.2016.01.112’

    Article  Google Scholar 

  89. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J. Mater. Sci. 30, 15521–15533 (2019). https://doi.org/10.1007/s10854-019-01929-2

    Article  CAS  Google Scholar 

  90. H. AlFannakh, Impedance spectroscopy, AC conductivity, and conduction mechanism of iron(II) chloride/polyvinyl alcohol/ polyvinylpyrrolidone polymer blend. Adv. Mater. Sci. Eng. 2022, 1–16 (2022). https://doi.org/10.1155/2022/7534935

    Article  CAS  Google Scholar 

  91. N.M.J. Rasali, S.K. Muzakir, A.S. Samsudin, A study on dielectric properties of the cellulose derivative-NH4Br-glycerolbased the solid polymer electrolyte system. Makara J. Technol. 21, 65–69 (2017). https://doi.org/10.7454/mst.v21i2.3082

    Article  Google Scholar 

  92. W. Jilani, A. Bouzidi, N. Mzabi, O. Gallot-Lavallée, H. Guermazi, Effect of ITO nanoparticles on dielectric relaxation processes and an analysis of the electric impedance characteristics of ITO/Epoxy nanocomposites for embedded capacitor devices. J. Elec. Materi. 48, 6529 (2019). https://doi.org/10.1007/s11664-019-07439-5

    Article  CAS  Google Scholar 

  93. V. Bajgar, M. Penhaker, L. Martinková, A. Pavlovič, P. Bober, M. Trchová, J. Stejskal, Cotton fabric coated with conducting polymers and their application in monitoring of carnivorous plant response. Sensors 16, 498 (2016). https://doi.org/10.3390/s16040498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge funding provided by the Deanship of Scientific Research at King Khalid University. As part of a small group research project with grant number RGP1/142/44.

Author information

Authors and Affiliations

Authors

Contributions

The following authors contributed to the study of the functional properties and characterizations of PVA-PVP PBs incorporating CdS/ZnO core–shell (ZCS) nanostructures for optoelectronic applications. This study investigated the functional properties and characterizations of PVA/PVP polymer blends incorporating CdS/ZnO core–shell (ZCS) nanostructures for optoelectronic applications. The ZCS nanostructures were synthesized using a hydrothermal method and characterized using X-ray diffraction (XRD). The PVA-PVP@ZCS PB films were prepared using a solution casting method and characterized using XRD, Optical limiting effect, UV–visible NIR spectroscopy, and dielectric conductivity by [WJ], [AB], [HYZ], and [ISY]. The effect of wt % ZCS nanostructure filler on the structural, optical, limiting effect, AC conductivity, and series resistance parameters have been examined. The UV–visible spectroscopy assessment exposed that the PVA-PVP@ZCS PB nanostructures had a higher absorption band in the visible region linked to the pure PVA-PVP PB film. The indirect and direct energy gap rates of polymer blend films were determined as the addition wt % ZCS increased. The results showed that the indirect energy gap rate decreased with increasing ZCS content, while the direct energy gap rate increased. This can be explained by the fact that the ZCS fillers act as electron traps, which reduce the energy required for electrons to transition from the valence band to the conduction band. The outcomes of this study show that the PVA-PVP@ZCS PB nanostructures have good functional properties, such as high visible light absorption. The PVA-PVP PB is a good matrix material for the CdS/ZnO core–shell nanostructure because it is transparent, flexible, and easy to process. The PVA-PVP PBs incorporating ZCS fillers were also successfully prepared and exhibited improved functional properties, such as enhanced electrical conductivity and optical transparency. It also provides good dispersion which is important for achieving high performance optoelectronic devices. The first draft of the manuscript was written by [AB] and all authors commented on previous versions of the manuscript. All authors read and approved the final version of the submitted manuscript.

Corresponding author

Correspondence to A. Bouzidi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilani, W., Bouzidi, A., Zahran, H.Y. et al. Identifying the functional properties and characterizations of PVA/PVP polymer blends incorporating CdS/ZnO core–shell (ZCS) fillers for optoelectronic applications. J Mater Sci: Mater Electron 35, 444 (2024). https://doi.org/10.1007/s10854-024-12188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12188-1

Navigation