Skip to main content

Advertisement

Log in

Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work an innovative experimental method has been proposed to estimate the optical bandgap and determine the types of electronic transitions. Solid polymer blend electrolyte films based on PVA:PEO have been prepared by the well known solution cast technique. It was observed that the absorption increased with increasing aluminum salt concentration and shifted to higher wavelengths. Shifting of absorption edge to lower photon energy indicates a good reactivity between the polymer blends and the aluminum salt which in turn the energy band gap decrement is expected. An increase in refractive index for the doped samples has been observed. The miscibility between the aluminum salt and the polymer blends can be well understood from the linear relationship between the refractive index and the volume fraction of the added salt. The increase of extinction coefficient at high wavelengths was observed. The optical band gap measured from the plots of (αhυ)^x versus photon energy (hυ) was compared to that determined from the optical dielectric loss. From the results of the present work it is understood that in order to avoid the plotting of many figures based on Tauc model, optical dielectric loss must be studied. Further research works are required to satisfy that the optical dielectric loss can be used to estimate the band gap and identify the types of electronic transition. The Urbach energy was found to increase with increasing aluminum salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Rama Mohan, V.B.S. Achari, V.V.R.N. Rao, A.K. Sharma, Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym. Test. 30, 881–886 (2011)

    Article  Google Scholar 

  2. S. Ibrahim, R. Ahmad, M.R. Johan, Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J. Lumin. 132, 147–152 (2012)

    Article  Google Scholar 

  3. C.V.S. Reddy, Q.-. Zhu, L.-Q. Mai, W. Chen, “Optical, electrical and discharge profiles for (PVC+ NaIO4) polymer electrolytes. J. Appl. Electrochem. 36, 1051–1056 (2006)

    Article  Google Scholar 

  4. M.T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: A review. Desalination 235, 199–244 (2009)

    Article  Google Scholar 

  5. K.N. Kumar, T. Sreekanth, R.M. Jaipal, R.U.V. Subba, Study of transport and electrochemical cell characteristics of PVP:NaClO3 polymer electrolyte system. J. Power Sour. 101, 130–133 (2001)

    Article  Google Scholar 

  6. K.N. Kumar, J.L. Rao, Y.C. Ratnakaram, Optical, magnetic and electrical properties of multifunctional Cr3+: Polyethylene oxide (PEO)+ polyvinylpyrrolidone (PVP) polymer composites. J. Mol. Struct. 1100, 546–554 (2015)

    Article  Google Scholar 

  7. P. Pradeepa, S. Edwinraj, G. Sowmya, J. Kalaiselvimary, M.R. Prabhu, Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends. Mater. Sci. Eng. 205, 6–17 (2016)

    Article  Google Scholar 

  8. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Physica B 434, 57–63 (2014)

    Article  Google Scholar 

  9. M.N. Muralidharan, S. Mathew, A. Seema, P. Radhakrishnan, T. Kurian, Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites. Mater. Chem. Phys. 171, 367–373 (2016)

    Article  Google Scholar 

  10. I. Roppolo, M. Sangermano, A. Chiolerio, Functional and physical properties of polymer nanocomposites. Chap. 7, 2016, doi:10.1002/9781118542316.ch7

  11. Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt Lett. 41(15), 3463–3466 (2016)

    Article  Google Scholar 

  12. C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu, W. Chen, Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016)

    Article  Google Scholar 

  13. I.B. Pehlivan, C.G. Granqvist, R. Marsal, P. Geore´n, G.A. Niklasso, [PEI–SiO2]:[LiTFSI] nanocomposite polymer electrolytes: Ion conduction and optical properties. Solar Energy Mater. Solar Cells 98, 465–471 (2012)

    Article  Google Scholar 

  14. W. Salama, Paleoenvironmental significance of aluminum phosphate-sulfate minerals in the upper Cretaceous ooidal ironstones, E-NE Aswan area, southern Egypt. Int. J. Earth Sci. (Geol Rundsch), doi:10.1007/s00531-014-1027-4

  15. A. Rakhmatullin, M. Keppert, F. Sˇimko, C. Bessada, Aluminium phosphate behaviour in Na3AlF6–Al2O3 melts: a new insight from in situ high temperature NMR measurements. New J. Chem. doi:10.1039/c5nj02416a

  16. A.J. Downs Chemistry of Aluminium, Gallium, Indium and Thallium, 1st edn. (Chapman & Hall, London, 1993)

    Book  Google Scholar 

  17. S.B. Aziz, Modifying poly(vinyl alcohol) (PVA) from insulator to small bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736–745 (2016)

    Article  Google Scholar 

  18. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites”. J Mater. Sci: Mater Electron. 26, 8022–8028 (2015)

    Google Scholar 

  19. S. Sudhahar, M.K. Kumar, A. Silambarasan, R. Muralidharan, R.M. Kumar, Studies on Structural, Spectral, and Optical Properties of Organic Nonlinear Optical Single Crystal:2-Amino-4,6-dimethylpyrimidinium p-Hydroxybenzoate. J. Mater. 2013, 7 (2013) Article ID 539312

    Google Scholar 

  20. F. Yakuphanoglu, C. Viswanathan, Electrical conductivity and single oscillator model properties of amorphous CuSe semiconductor thin film. J. Non-Cryst. Solids 353, 2934–2937 (2007)

    Article  Google Scholar 

  21. F. Yakuphanoglu, M. Sekerci, A. Balaban, The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films. Opt. Mater. 27, 1369–1372 (2005)

    Article  Google Scholar 

  22. N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, Combined theoretical and experimental study of refractive indices of water–acetonitrile–salt systems. J. Phys. Chem. B 119, 10701–10709 (2015)

    Article  Google Scholar 

  23. O.Gh. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater. Sci 26, 5303–5309 (2015)

    Google Scholar 

  24. Y. Rao, X. Li, X. Lei, S. Jockusch, M.W. George, N.J. Turro, K.B. Eisenthal, Fundamental optical properties of linear and cyclic alkanes: VUV absorbance and index of refraction. J. Phys. Chem. A 113, 9337–9347 (2009)

    Article  Google Scholar 

  25. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region”. J Mater. Sci 27, 4163–4171 (2016)

    Google Scholar 

  26. R. YQ, S. Chen, Molecular composites comprising TiO2 and their optical properties. Macromolecules 41, 4838–4844 (2008)

    Article  Google Scholar 

  27. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2nanocomposites by one-step in situ solvo thermal method. Iran. Polym. J. 22, 767–774 (2013)

    Article  Google Scholar 

  28. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21, 18623–18629 (2011)

    Article  Google Scholar 

  29. V. Modgil, V.S. Rangra, Effect of Sn addition on thermal and optical properties of Pb9Se71Ge20-xSnx (8 ≤ x ≤ 12) glass. J. Mater. 2014, 8 (2014) Article ID 318262

    Google Scholar 

  30. S.B. Aziz, S. Hussein, A.M. Hussein, S.R. Saeed, Optical characteristics of polystyrene based solid polymer composites: Effect of metallic copper powder. Int. J. Metals 2013, (2013) Article ID 123657, http://dx.doi.org/10.1155/2013/123657

  31. F.F. Muhammad, S.B. Aziz, S.A., Hussein, Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. 26, 521–529 (2015)

    Google Scholar 

  32. M.M. Varishetty, W. Qiu, Y. Gao, W. Chen, Structure, electrical and optical properties of (PVA/LiAsF6) polymer composite electrolyte films. Polym. Eng. Sci. (2010), doi:10.1002/pen.21437

    Google Scholar 

  33. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. 27, 1363–1368 (2005)

    Article  Google Scholar 

  34. K.R. Nemade, S.A. Waghuley, Synthesis of MgO nanoparticles by solvent mixed spraypyrolysis technique for optical investigation. Int. J. Metals 2014, 4 (2014), Article ID 389416, http://dx.doi.org/10.1155/2014/389416

  35. F.E.F. Silva, M.C.B. Di-Medeiros, K.A. Batista, K.F. Fernandes, PVA/polysaccharides blended films: Mechanical properties. J. Mater. 2013, 6, (2014) Article ID 413578

    Google Scholar 

  36. V.M. Mohan, P.B. Bhargav, V. Raja, A.K. Sharma, V.V.R. Narasimha Rao, Optical and electrical properties of pure and doped peo polymer electrolyte films. Soft Mater. 5(1), 33–46 (2007)

    Article  Google Scholar 

  37. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O6+ ion beam–irradiated polymers. Int. J. Polym. Anal. Charact. 19, 204–211 (2014)

    Article  Google Scholar 

  38. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constants of Cu(II) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film. Opt. Commun. 239, 275–280 (2004)

    Article  Google Scholar 

  39. G. Attia, M.F.H. Abd El-kader, Structural, optical and thermal characterization of PVA/2HEC poly blend films Int. J. Electrochem. Sci. 8, 5672–5687 (2013)

    Google Scholar 

  40. B. Ghosh, F.G. Olivos, R.E. Gonza´lez, Plasmon-enhanced optical absorption with graded bandgap in diamond-like carbon (DLC) films. J. Mater. Sci. 52, 218–228 (2017)

    Article  Google Scholar 

  41. R.S. Al-Faleh, A.M. Zihlif, A study on optical absorption and constants of doped poly(ethylene oxide). Physica B 406, 1919–1925 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Ministry of Higher Education and Scientific Research-Kurdistan Regional Government-University of Sulaimani for financial support. The financial support from Development Center for Research and Training (DCRT) - University of Human Development for this study is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B., Abdullah, O.G., Hussein, A.M. et al. Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study. J Mater Sci: Mater Electron 28, 7473–7479 (2017). https://doi.org/10.1007/s10854-017-6437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6437-1

Keywords

Navigation