Skip to main content
Log in

Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A CuFeO2 film was prepared on p-type silicon wafer to fabricate an Al/CuFeO2/p-Si/Al diode by the sol–gel method. The temperature and frequency dependence of electrical characteristics of Al/CuFeO2/p-Si/Al diode were investigated using current–voltage (IV) and capacitance/conductance–voltage (C/GV) measurements. It is found that the ideality factor (n) decreases while zero-bias barrier height (Φ Bo) increases with increasing temperature. The conventional Richardson plot [ln(I o/T 2) vs. 1000/T] shows a linearity above about 200 °K. From the slope and intercept of the linear region, the values of activation energy (E a) and Richardson constant (A*) were found to be 0.15 eV and 1.24 × 10−8 A cm−2 K−2, respectively. Then, the values of mean barrier height and A* were determined from the modified Richardson plot [ln(I 0/T 2)−q 2 σ 20 /2k 2 T 2 vs. 1000/T] and found to be 1.06 eV and 33.87 A cm−2 K−2, respectively. The calculated A* value is very close to the theoretical value of 32 A cm−2 K−2 for p-type Si. The obtained results indicate that Al/CuFeO2/p-Si/Al diode can be used as a temperature measurement sensor for low-temperature controlling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Aksoy, S. Ruzgar, J. Mater. Electron. Dev. 1, 33–37 (2015)

    Google Scholar 

  2. B. Arif, J. Mater. Electron. Dev. 1, 28–32 (2015)

    Google Scholar 

  3. S. Ruzgar, S. Aksoy, J. Mater. Electron. Dev. 1, 38–41 (2015)

    Google Scholar 

  4. Z. Fan, J.G. Lu, ZnO nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)

    Article  Google Scholar 

  5. U. Ozgur, Y.I. Avilov, C. Liu, A. Teke, M.A. Reschchikov, S. Dogan, V. Avrutin, S.J. Cho, M. Morcoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  6. J. Panigrahi, D. Behera, I. Mohanty, U. Subudhi, B.B. Nayak, B.S. Acharya, Appl. Surf. Sci. 258, 304–311 (2011)

    Article  ADS  Google Scholar 

  7. J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager, R.L. Hoffman, Thin Solid Films 411, 119–124 (2002)

    Article  ADS  Google Scholar 

  8. B.V. Beznosikov, K.S. Aleksandrov, J. Struct. Chem. 50, 102–107 (2009)

    Article  Google Scholar 

  9. E. Mugnier, A. Barnabé, P. Tailhades, Solid State Ion. 177, 607–612 (2006)

    Article  Google Scholar 

  10. Y. Wang, Y. Gu, T. Wang, W. Shi, J. Alloys Compd. 509, 5897–5902 (2011)

    Article  Google Scholar 

  11. S.Z. Li, J. Liu, X.Z. Wang, B.W. Yan, H. Li, J.M. Liu, Phys. B 407, 2412–2415 (2012)

    Article  ADS  Google Scholar 

  12. A. Barnabé, E. Mugnier, L. Presmanes, P. Tailhades, Mater. Lett. 60, 3468 (2006)

    Article  Google Scholar 

  13. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  14. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  15. M.K. Achuthan, K.N. Bhat, Fundamentals of semiconductor devices (McGraw-Hill, New Delhi, 2007)

    Google Scholar 

  16. B.L. Sharma, Metal-semiconductor schottky barrier junctions and their applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  17. R.T. Tung, Phys. Rev. B 64, 205310 (2001)

    Article  ADS  Google Scholar 

  18. I.S. Yahia, A.A.M. Farag, F. Yakuphanoglu, W.A. Farooq, Synth. Met. 161, 881–887 (2011)

    Article  Google Scholar 

  19. M. Mamor, K. Bouziane, A. Tirbiyine, H. Alhamrashdi, Superlat. Microstruct. 72, 344–351 (2014)

    Article  ADS  Google Scholar 

  20. A. Tataroğlu, F.Z. Pür, Phys. Scr. 88, 015801 (2013)

    Article  ADS  Google Scholar 

  21. S. Alialy, S. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014)

    Article  ADS  Google Scholar 

  22. S.K. Tripathi, M. Sharma, J. Appl. Phys. 111, 074513 (2012)

    Article  ADS  Google Scholar 

  23. A. Tataroğlu, Ş. Altındal, J. Alloys Compd. 479, 893–897 (2009)

    Article  Google Scholar 

  24. B. Gunduz, A.A. Al-Ghamdi, A.A. Hendi, Z.H. Gafer, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Superlat. Microstruct. 64, 167–177 (2013)

    Article  ADS  Google Scholar 

  25. A.A. Kumar, L.D. Rao, V.R. Reddy, C.J. Choi, Curr. Appl. Phys. 13, 975–980 (2013)

    Article  ADS  Google Scholar 

  26. H. Norde, J. Appl. Phys. 50, 5052–5054 (1979)

    Article  ADS  Google Scholar 

  27. S. Chand, J. Kumar, J. Appl. Phys. A 63, 171 (1996)

    ADS  Google Scholar 

  28. Ş. Altındal, J. Mater. Electron. Dev. 1, 42–47 (2015)

    Google Scholar 

  29. J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522–1533 (1991)

    Article  ADS  Google Scholar 

  30. M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Solid State Electron. 45, 133 (2001)

    Article  ADS  Google Scholar 

  31. S.S. Naik, V.R. Reddy, Adv. Mat. Lett. 3, 188–196 (2012)

    Article  Google Scholar 

  32. M. Gedikpınar, M. Cavas, Z.A. Alahmed, F. Yakuphanoglu, Superlatt. Microstr. 59, 123–132 (2013)

    Article  ADS  Google Scholar 

  33. F.Z. Pür, A. Tataroğlu, Phys. Scr. 86, 035802 (2012)

    Article  ADS  Google Scholar 

  34. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  ADS  Google Scholar 

  35. P. Cova, A. Singh, Solid State Electron. 33, 11 (1990)

    Article  ADS  Google Scholar 

  36. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  37. A. Tataroğlu, H. Tuncer, A.A. Al-Ghamdi, A. Dere, B. Arif, S. Yol, N. Ozdemir, F. El-Tantawy, F. Yakuphanoglu, Synth. Met. 206, 15–23 (2015)

    Article  Google Scholar 

  38. S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Mater. Res. Bull. 49, 369–383 (2014)

    Article  Google Scholar 

  39. M. Sharma, S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155–161 (2016)

    Article  Google Scholar 

  40. B. Akkal, Z. Benamara, B. Gruzza, L. Bideux, Vacuum 57, 219–228 (2000)

    Article  Google Scholar 

  41. E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055–1133 (1967)

    Article  Google Scholar 

  42. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216–219 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by Unit of Scientific Research Projects of Firat University under project numbers: FF.14.33 and FF.12.10 and was also supported by King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yakuphanoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgazzar, E., Tataroğlu, A., Al-Ghamdi, A.A. et al. Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Appl. Phys. A 122, 617 (2016). https://doi.org/10.1007/s00339-016-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0148-y

Keywords

Navigation