Skip to main content
Log in

Flexible, Chemically Bonded Bi-PVA–PVP Composite for Enhanced Diagnostic X-ray Shielding Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The motto of this work is to develop a flexible, lightweight metal-polymer composite for shielding diagnostic X-rays (40–140 kV) as an alternative to toxic lead/lead composite for making aprons, skirts, gonad shields, thyroid shield, etc. as they are effective in shielding ionizing radiations. But the uniform distribution of filler in the matrix is a major challenge. To overcome this drawback we have incorporated Bi2O3 in polyvinyl alcohol-polyvinyl pyrrolidone (PVA–PVP) blend by dissolving 0–5 gm of Bi2O3 in 4 molar HCl rather than dispersing nano/microparticles. More than 5 gm of Bi2O3 is not soluble in 4 molar HCl. Therefore, it is chosen as an optimum composition i.e. PB5. Bismuth oxide was found to react with HCl and form an amorphous BiOCl phase as validated by XRD and FT-IR. This amorphous phase was noticed to crystallize when sintered at 410 °C as confirmed through XRD. The X-ray attenuation characteristics were studied against accelerating voltage of 50-140 kV. The 5.5 mm thick PB5 sample shows the lead equivalent of 0.5 mm at 100 kV. It shows uniform attenuation throughout the matrix due to the uniform distribution of Bi as confirmed through EDX mapping. The PB5 composite has sufficient tensile strength, which is suitable for making radiation shielding apparel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Quan et al., UHMWPE/nanoparticle composite membrane for personal radiation shielding. Compos. Sci. Technol. 201, 108500 (2021)

    Article  CAS  Google Scholar 

  2. M.H.A. Mhareb et al., Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide. Mater. Chem. Phys. 272, 125047 (2021)

    Article  CAS  Google Scholar 

  3. R.P. Varsha Agrawal, R. Arya, G. Rajak, A. Giri, Abhijit et al., Green conversion of hazardous red mud into diagnostic x-ray shielding tile. J. Hazardous Mater. (2021). https://doi.org/10.1016/j.jhazmat.2021.127507

    Article  Google Scholar 

  4. A.L. Kozlovskiy, M.V. Zdorovets, Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263, 124444 (2021)

    Article  CAS  Google Scholar 

  5. A. Samir et al., Polyvinyl chloride/styrene butadiene rubber polymeric blend filled with bismuth subcarbonate (BiO)2CO3 as a shielding material for gamma rays. Polym. Compos. 41(2), 535–543 (2020)

    Article  CAS  Google Scholar 

  6. V. Harish et al., Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. J. Appl. Polym. Sci. 112(3), 1503–1508 (2009)

    Article  CAS  Google Scholar 

  7. A. Bijanu et al., Metal-polymer composites for rradiation protection: a review. J. Polym. Res. (2021). https://doi.org/10.1007/s10965-021-02751-3

    Article  Google Scholar 

  8. R. Li et al., Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos. Sci. Technol 143, 67–74 (2017)

    Article  CAS  Google Scholar 

  9. Y. Hou et al., Gamma ray shielding property of tungsten powder modified continuous basalt fiber reinforced epoxy matrix composites. Polym. Compos. 39(S4), E2106–E2115 (2018)

    Article  CAS  Google Scholar 

  10. K. Yue et al., A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosimetry 133(4), 256–260 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. A.M. Ross et al., Prevalence of spinal disc disease among interventional cardiologists. Am. J. Cardiol. 79(1), 68–70 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. B. Moore et al., The relationship between back pain and lead apron use in radiologists. AJR Am. J. Roentgenol. 158(1), 191–193 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. L.W. Klein et al., Occupational health hazards in the interventional laboratory: time for a safer environment. Radiology 250(2), 538–544 (2009)

    Article  PubMed  Google Scholar 

  14. L.B.T. La et al., Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Compos. Sci. Technol. 163, 89–95 (2018)

    Article  CAS  Google Scholar 

  15. K. Nasouri, A.M. Shoushtari, Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos. Sci. Technol. 145, 46–54 (2017)

    Article  CAS  Google Scholar 

  16. M.I.A.A. Maksoud et al., Gamma radiation shielding properties of poly(vinyl butyral)/Bi2O3@BaZrO3 nanocomposites. Mater. Chem. Phys. 268, 124728 (2021)

    Article  CAS  Google Scholar 

  17. F.-H. Mai et al., Polymer fibers highly filled with styrene maleic anhydride-modified PbWO4 for improved wear comfort of γ-ray-shielding articles. ACS Appl. Polym. Mater. 4(9), 6394–6402 (2022)

    Article  CAS  Google Scholar 

  18. K. Vaid et al., Study of dielectric and electromagnetic shielding behaviour of BaTiO3-CoFe2O4 filled LDPE composite. Polym. Compos. 42(2), 819–827 (2021)

    Article  CAS  Google Scholar 

  19. E. Håkansson, A. Amiet, A. Kaynak, Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18GHz frequency range. Synth. Met 156, 917–925 (2006)

    Article  Google Scholar 

  20. M.J. Yaffe et al., Composite materials for x-ray protection. Health Phys. 60(5), 661–664 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. P.H. Murphy, Y. Wu, S.A. Glaze, Attenuation properties of lead composite aprons. Radiology 186(1), 269–272 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Takano et al., [Experimental and theoretical studies on radiation protective effect of a lighter non-lead protective apron]. Nihon Hoshasen Gijutsu Gakkai Zasshi 61(7), 1027–1032 (2005)

    Article  PubMed  Google Scholar 

  23. H. Wang et al., Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites. Compos. Sci. Technol. 157, 57–66 (2018)

    Article  CAS  Google Scholar 

  24. S.M. Badawy, A.A. Abd El-Latif, Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym. Compos. 38(5), 974–980 (2017)

    Article  CAS  Google Scholar 

  25. L. Gilys, E. Griškonis, Lead ffree multilayered polymer composites for radiation shielding. Polymers (2022). https://doi.org/10.3390/polym14091696

    Article  PubMed Central  PubMed  Google Scholar 

  26. M. Jamil et al., Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 as potential x-ray shielding material. Radiat. Phys. Chem. 156, 272–282 (2019)

    Article  CAS  Google Scholar 

  27. O. Baykara et al., Polyimide nanocomposites in ternary structure: “a novel simultaneous neutron and gamma-ray shielding material.” Polym. Adv. Technol. 31(11), 2466–2479 (2020)

    Article  CAS  Google Scholar 

  28. B. Siewert et al., Practice policy and quality initiatives: strategies for optimizing staff safety in a radiology department. RadioGraphics 33(1), 245–261 (2013)

    Article  PubMed  Google Scholar 

  29. R.S. Livingstone, A. Varghese, A simple quality control tool for assessing integrity of lead equivalent aprons. Indian J. Radiol. Imaging 28(2), 258–262 (2018)

    Article  PubMed Central  PubMed  Google Scholar 

  30. Q. Li et al., Enhanced Radiation shielding with conformal light-weight nanoparticle–polymer composite. ACS Appl. Mater. Interfaces 10(41), 35510–35515 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. K. Rajesh et al., Effect of ZnO nanofiller on dielectric and mechanical properties of PVA/PVP blend. AIP Conf. Proceed. 2162(1), 020096 (2019)

    Article  CAS  Google Scholar 

  32. R. Kk et al., Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1762-0

    Article  Google Scholar 

  33. S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci. 29(12), 10517–10534 (2018)

    CAS  Google Scholar 

  34. A.N. Subba Rao et al., Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 182, 107719 (2019)

    Article  CAS  Google Scholar 

  35. S. Choudhary, Structural, morphological, thermal, dielectric, and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix-based polymer nanocomposites. Polym. Compos. 39(S3), E1788–E1799 (2018)

    Article  CAS  Google Scholar 

  36. N. Bakar et al., Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Mater. Design 65, 204–211 (2015)

    Article  Google Scholar 

  37. M.T. Ramesan et al., Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1992–2000 (2018)

    Article  CAS  Google Scholar 

  38. E. Abdelrazek et al., Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607–613 (2010)

    Article  Google Scholar 

  39. C.V. More et al., Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett 19(3), 2057–2090 (2021)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. M. Kazempour et al., Assessment of the radiation attenuation properties of several lead free composites by Monte Carlo simulation. J. Biomed. Phys. Eng. 5(2), 67–76 (2015)

    CAS  PubMed Central  PubMed  Google Scholar 

  41. J.P. McCaffrey et al., Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 34(2), 530–537 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. N. Papadopoulos et al., Comparison of Lead-free and Conventional x-ray aprons for Diagnostic Radiology IFMBE Proceedings, 2009. vol 25

  43. A. Bijanu et al., Chemically bonded tungsten-based polymer composite for X-rays shielding applications. Mater. Today Commun. 32, 104100 (2022)

    Article  CAS  Google Scholar 

  44. Z. Alsayed et al., Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite. Physica Scripta (2020). https://doi.org/10.1088/1402-4896/ab9a6e

    Article  Google Scholar 

  45. N. Intachai et al., Effect of Gd2O3 on radiation shielding, physical and optical properties of sodium borosilicate glass system. Radiat. Phys. Chem 199, 110361 (2022)

    Article  CAS  Google Scholar 

  46. R. Mirji, B. Lobo, Study of polycarbonate–bismuth nitrate composite for shielding against gamma radiation. J. Radioanal. Nuclear Chem. 324, 7 (2020)

    Article  CAS  Google Scholar 

  47. M.S. Al-Buriahi et al., The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses. J. Mater. Sci. 33(3), 1123–1139 (2022)

    CAS  Google Scholar 

  48. H. Zidan et al., Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int. J. Electrochem. Sci. 11, 9041–9056 (2016)

    Article  CAS  Google Scholar 

  49. S. Jayaraj et al., Enhancement in thermal, mechanical and electrical properties of novel PVA nanocomposite embedded with SrO nanofillers and the analysis of its thermal degradation behavior by nonisothermal approach. Polym. Compos. 41(4), 1277–1290 (2020)

    Article  CAS  Google Scholar 

  50. L. Li et al., Visible/near-IR-light-driven TNFePc/BiOCl organic–inorganic heterostructures with enhanced photocatalytic activity. Dalton Trans 45(23), 9497–9505 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. W. Tang et al., Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOI0.5Cl0.5. RSC Adv. 9(25), 14060–14071 (2019)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. C. Zhao et al., 3D BiOBr/BiOCl heterostructure microspheres with enhanced photocatalytic activity. J. Mater. Sci. 31(3), 1868–1878 (2020)

    CAS  Google Scholar 

  53. Z. Seddigi et al., Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants. PLOS ONE 12, e0172218 (2017)

    Article  PubMed Central  PubMed  Google Scholar 

  54. N. Azeez, Thermogravimetric analysis on PVA / PVP blend under air atmosphere. Eng. Technol. J. (2016). https://doi.org/10.30684/etj.34.13A.6

    Article  Google Scholar 

  55. S. Gasaymeh et al., Synthesis and characterization of silver/polyvinilpirrolidone (Ag/PVP) nanoparticles using gamma irradiation techniques. Am. J. Appl. Sci. 7, 892 (2010)

    Article  CAS  Google Scholar 

  56. T.-T. Li et al., Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/chitosan(CS)/graphene(gr) nanofibrous membranes. J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2019.08.035

    Article  Google Scholar 

  57. A.Y. Yassin, Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J. Mater. Sci. 31(21), 19447–19463 (2020)

    Google Scholar 

  58. R.M. Lilleby Helberg et al., PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: synergistic enhancement of CO2 separation performance. Green. Energy  Environ. 5(1), 59–68 (2020)

    Article  Google Scholar 

  59. Y. Ma et al., Simple thermal decomposition of bismuth citrate to Bi/C/α-Bi2O3 with enhanced photocatalytic performance and adsorptive ability. Catal. Today 340, 40–48 (2020)

    Article  CAS  Google Scholar 

  60. S. Mallakpour, M. Naghdi, Evaluation of nanostructure, optical absorption, and thermal behavior of poly(vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) based nanocomposite films containing coated SiO2 nanoparticles with citric acid and l(+)-ascorbic acid. Polym. Compos. 39(6), 2012–2018 (2018)

    Article  CAS  Google Scholar 

  61. A.R. Polu, R. Kumar, H.-W. Rhee, Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics (2015). https://doi.org/10.1007/s11581-014-1174-4

    Article  Google Scholar 

  62. H.M. Zidan et al., Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019)

    Article  CAS  Google Scholar 

  63. U. Maheshwari et al., Fabrication of polyvinyl alcohol-polyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int. J. Polym. Mater. (2014). https://doi.org/10.1080/00914037.2013.854216

    Article  Google Scholar 

  64. S. Uma Maheshwari et al., Preliminary studies of PVA/PVP blends incorporated with HAp and β-TCP bone ceramic as template for hard tissue engineering. Biomed. Mater. Eng. 28(4), 401–415 (2017)

    CAS  PubMed  Google Scholar 

  65. J. Tavakoli et al., Enlightening freeze–thaw process of physically cross-linked poly(vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl. Polym. Mater. 1(6), 1390–1398 (2019)

    Article  CAS  Google Scholar 

  66. A. Lakshmanan et al., Low-basis weight Polyacrylonitrile/polyvinylpyrrolidone blend nanofiber membranes for efficient particulate matter capture. ACS Appl. Polym. Mater. 4(5), 3971–3981 (2022)

    Article  CAS  Google Scholar 

  67. S. Liu et al., Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy. J. Mater. Chem. 21(32), 11726–11729 (2011)

    Article  CAS  Google Scholar 

  68. T. Wu et al., Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1 – x solid solutions. J. Alloys Compd. 671, 318–327 (2016)

    Article  CAS  Google Scholar 

  69. G. Cheng, J. Xiong, F.J. Stadler, Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J. Chem 37(10), 3207–3213 (2013)

    Article  CAS  Google Scholar 

  70. S. Kang et al., Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. J. Exp. Nanosci. 11(4), 259–275 (2016)

    Article  CAS  Google Scholar 

  71. J. Zhang et al., Ultra-light and compressible 3D BiOCl/ RGO aerogel with enriched synergistic effect of adsorption and photocatalytic degradation of oxytetracycline. J. Mater. Res. Technol. 8(5), 4577–4587 (2019)

    Article  CAS  Google Scholar 

  72. W. Lin et al., Graphene oxide/BiOCl nanocomposite films as efficient visible light photocatalysts. Front. Chem. 6, 274 (2018)

    Article  PubMed Central  PubMed  Google Scholar 

  73. S. Husseinsyah, R. Ahmad, Properties of low-density polyethylene/palm kernel shell composites: effect of polyethylene co-acrylic acid. J. Thermoplast. Compos. Mater. (2013). https://doi.org/10.1177/0892705711417028

    Article  Google Scholar 

  74. W. Poltabtim et al., X-ray shielding, mechanical, physical, and water absorption properties of wood/PVC composites containing bismuth oxide. Polymers 13(13), 2212 (2021)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. S.C. Chen, W.L. Jong, A.Z. Harun, Evaluation of X-ray beam quality based on measurements and estimations using SpekCalc and Ipem78 Models. Malays J. Med. Sci. 19(3), 22–28 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  76. E.R. Epp, H. Weiss, Experimental study of the photon energy spectrum of primary diagnostic x-rays. Phys. Med. Biol. 11(2), 225–238 (1966)

    Article  CAS  PubMed  Google Scholar 

  77. A.E.R. Board, Editor. (2016) Radiation safety in manufacture, supply and use of medical diagnostic x-ray equipment

  78. F. Wahyuni et al., Bismuth oxide filled polyester composites for X-ray radiation shielding applications. Pol. J. Environ. Stud. 31(4), 3985–3990 (2022)

    Article  CAS  Google Scholar 

  79. S. Alshahri et al., LDPE/Bismuth oxide nanocomposite: preparation, characterization and application in X-ray shielding. Polymers (2021). https://doi.org/10.3390/polym13183081

    Article  PubMed Central  PubMed  Google Scholar 

  80. S. Jayakumar, T. Saravanan, J. Philip, Polymer nanocomposites containing β-Bi2O3 and silica nanoparticles: thermal stability, surface topography and X-ray attenuation properties. J. Appl. Polym. Sci 137(36), 49048 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Abhijit Bijanu is grateful to CSIR, New Delhi, India for the awarding the SRF fellowship. All the authors are thankful to MRC, MNIT, (Materials Research centre Malaviya National Institute of Technology), Jaipur for providing the FT-IR facility.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors AB, DM, STS and VSG contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by AB, GR, RP, RA and VA. The first draft of the manuscript was written by AB. The authors DM, STS, and MAK did the supervision and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shabi Thankaraj Salammal or Deepti Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 570.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijanu, A., Rajak, G., Paulose, R. et al. Flexible, Chemically Bonded Bi-PVA–PVP Composite for Enhanced Diagnostic X-ray Shielding Applications. J Inorg Organomet Polym 33, 2279–2291 (2023). https://doi.org/10.1007/s10904-023-02662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02662-4

Keywords

Navigation