Skip to main content
Log in

Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1−x):AgI x (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2016

Abstract

This paper reports on the investigation of electrical percolation threshold and ion transport mechanism for ion-conducting solid polymer composites based on chitosan. The composite samples were prepared by solution cast technique. The result of DC conductivity versus percolation threshold (\(\varPhi^{ - 1/3}\) ) confirmed that at low AgI concentration, the tunneling effect governs ionic conduction mechanism. Nevertheless, at high filler concentration, the DC conductivity showed a plateau behavior. The DC conductivity as a function of reciprocal temperature revealed that the ion conduction mechanism is slightly temperature dependent and the ion–ion correlational effect is dominant. A steep increase in DC conductivity above 323 K is observed, which indicated the existence of some phase transition near the beta (β)-phase. The drop of DC conductivity at high temperatures is anticipated from the impedance plots. The AC conductivity spectrum exhibited three distinct regions at low temperatures. The high-frequency regions of AC conductivity spectra were almost temperature independent at low temperatures (303–323 K) and obeyed the Jonscher’s power law. The variation in frequency exponent versus temperature reveals that ion conduction mechanism follows QMT and CBH models at low and high temperatures, respectively. The valuable achievement of this work is that the temperature dependence of DC conductivity and the frequency exponent (s) is correlated to interpret the Ag+ ion dynamic and ion–ion correlational effect. The Argand plots were used to explain the relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Foltyn, M. Wasiucione, J.E. Garbarczyk, J.L. Nowinski, S. Gierlotka, B. Palosz, Low-temperature conductivity of composites based on Ag+-ion conducting glasses and α-Al2O3 matrix, prepared via a high-pressure route. Solid State Ionics 179, 38–41 (2008)

    Google Scholar 

  2. M. Hassan, R. Rafiuddin, Ionic conductivity and phase transition behaviour in 4AgI–(1−x)PbI22x CuI system. Res Lett Phys 2008, 4 (2008). doi:10.1155/2008/249402

    Article  Google Scholar 

  3. Z. Wiśniewski, L. Górski, D. Zasada, Investigation of structure and conductivity of superionic conducting materials obtained on the basis of silver iodide. Acta. Phys. Pol. A 113, 1231–1236 (2008)

    Article  ADS  Google Scholar 

  4. H. Correa, R.A. Vargas, J. Garć-Barriocanal, A. Rivera, J. Santamaŕ, C. Léon, Electrical conductivity relaxation in lithium doped silver iodide. J. Eur. Ceram. Soc. 27, 4297–4300 (2007)

    Article  Google Scholar 

  5. S. Bhadra, N.K. Singha, D. Khastgir, Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr. Appl. Phys. 9, 396–403 (2009)

    Article  ADS  Google Scholar 

  6. B. Kumar, J.P. Fellner, Polymer–ceramic composite protonic conductors. J. Power Sources 123, 132–136 (2003)

    Article  ADS  Google Scholar 

  7. S. Shekhar, V. Prasad, S.V. Subramanyam, Structural and electrical properties of composites of polymer–iron carbide nanoparticles embedded in carbon. Mater. Sci. Eng. B 133, 108–112 (2006)

    Article  Google Scholar 

  8. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)

    Article  Google Scholar 

  9. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 9, 165–171 (2009)

    Article  ADS  Google Scholar 

  10. R. Hirase, Y. Higashiyama, M. Mori, Y. Takahar, Ch. Yamane, Hydrated salts as both solvent and plasticizer for chitosan. Carbohydr. Polym. 80, 993–996 (2010)

    Article  Google Scholar 

  11. T.S. Trung, W.W. Thein-Han, N.T. Qui, C.-H. Ng, W.F. Stevens, Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresour Technol 97, 659–663 (2006)

    Article  Google Scholar 

  12. P. Agrawal, G.J. Strijkers, K. Nicolay, Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev. 62, 42–58 (2010)

    Article  Google Scholar 

  13. S.B. Aziz, Role of dielectric constant on ion transport: reformulated Arrhenius equation. Adv. Mater. Sci. Eng. 2016, 11 (2016). doi:10.1155/2016/2527013

    Article  Google Scholar 

  14. S.B. Aziza, Z.H.Z. Abidin, M.F.Z. Kadir, Innovative method to avoid the reduction of silver ions to silver nanoparticles (Ag+→Ag°) in silver ion conducting based polymer electrolytes. Phys. Scr. 90, 035808 (2015)

    Article  ADS  Google Scholar 

  15. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Phys. B Condens. Matter. 405, 4429–4433 (2010)

    Article  ADS  Google Scholar 

  16. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. Express Polym. Lett. 4, 300–310 (2010)

    Article  Google Scholar 

  17. S.B. Aziz, Z.H.Z. Abidin, Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Mater. Chem. Phys. 144, 280–286 (2014)

    Article  Google Scholar 

  18. S.B. Aziz, Z.H.Z. Abidin, Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. J. Appl. Polym. Sci. 123, 1–10 (2015). doi:10.1002/APP.41774

    Google Scholar 

  19. V. Aravindan, C. Lakshmi, P. Vickraman, Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoro-propylene/poly ethylmethacrylate blend polymer electrolytes. Curr. Appl. Phys. 9, 1106–1111 (2009)

    Article  ADS  Google Scholar 

  20. G.C. Psarras, Hopping conductivity in polymer matrix–metal particles composites. Compos. A Appl. Sci. Manuf. 37, 1545–1553 (2006)

    Article  Google Scholar 

  21. S. Albert, N. Frolet, P. Yot, A. Pradel, M. Ribes, Characterisation of porous Vycor 7930–AgI composites synthesised by electro-crystallisation. Microporous Mesoporous Mater. 99, 56–61 (2007)

    Article  Google Scholar 

  22. C. Gondran, F. Albert, E. Siebert, Kinetics of sodium and silver exchange on a PEO x –NaI–(AgI)0.25 based internal reference system. Solid State Ionics 84, 131–138 (1996)

    Article  Google Scholar 

  23. M.S. Han, Y.K. Lee, H.S. Lee, ChH Yun, W.N. Kim, Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylenesulfide) by melt mixing. Chem. Eng. Sci. 64, 4649–4656 (2009)

    Article  Google Scholar 

  24. F. Liu, X. Zhang, W. Li, J. Cheng, X. Tao, Y. Li, L. Sheng, Investigation of the electrical conductivity of HDPE composites filled with bundle-like MWNTs. Compos. A Appl. Sci. Manuf. 40, 1717–1721 (2009)

    Article  Google Scholar 

  25. M. Hosono, J. Kawamura, H. Itoigawa, N. Kuwata, T. Kamiyama, Y. Nakamura, Structure and ionic conductivity of rapidly quenched AgI–Ag2WO4 superionic conductor glasses. J. Non-Cryst. Solids 244, 81–88 (1999)

    Article  ADS  Google Scholar 

  26. J.L. Nowinśki, M. Mroczkowska, J.R. Dygas, J.E. Garbarczyk, M. Wasiucionek, Electrical properties and crystallization processes in AgI–Ag2O–P2O5, [Ag2O]/[P2O5] = 3, glasses. Solid State Ionics 176, 1775–1779 (2005)

    Article  Google Scholar 

  27. M. Foltyn, M. Wasiucionek, J.E. Garbarczyk, J.L. Nowinski, S. Gierlotka, B. Palosz, Low-temperature conductivity of composites based on Ag+-ion conducting glasses and α-Al2O3 matrix, prepared via a high-pressure route. Solid State Ionics 179, 38–41 (2008)

    Google Scholar 

  28. K. Sakurai, T. Maegawa, T. Takahashi, Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41, 7051–7056 (2000)

    Article  Google Scholar 

  29. H. Correa, R.A. Vargas, J. Garcia-Barriocanal, A. River, J. Santamaria, C. Léon, Electrical conductivity relaxation in lithium doped silver iodide. J. Eur. Ceram. Soc. 27, 4297–4300 (2007)

    Article  Google Scholar 

  30. J.W. Brightwell, C.N. Buckley, L.S. Miller, B. Ray, Structural studies and electrical conductivity versus temperature measurements in mixed silver-lead iodide phases. Solid State Ionics 9–10, 1169–1174 (1983)

    Article  Google Scholar 

  31. J.W. Brightwell, C.N. Buckley, B. Ray, Electrical and phase behavior of the system AgI–PbI2. Solid State Commun. 42, 715–716 (1982)

    Article  ADS  Google Scholar 

  32. T.M. Pappenfus, W.A. Henderson, B.B. Owens, K.R. Mann, W.H. Smyrl, Ionic conductivity of a poly(vinylpyridinium)/silver iodide solid polymer electrolyte system. Solid State Ionics 171, 41–44 (2004)

    Article  Google Scholar 

  33. M.R. Johan, T.S. Leng, N.L. Hawari, Sh Suan, Phase transition and complex impedance studies of mechano-chemically synthesized AgI–CuI solid solutions. Int. J. Electrochem. Sci. 6, 6235–6243 (2011)

    Google Scholar 

  34. S.A. Rozanski, F. Kremer, Relaxation and charge transport in mixtures of zwitterionic polymers and inorganic salts. Macromol. Chem. Phys. 196, 877–890 (1995)

    Article  Google Scholar 

  35. M.E. Bassiouni, F. Al-Shamy, N.K. Madi, M.E. Kassem, Temperature and electric field effects on the dielectric dispersion of modified polyvinyl chloride. Mater. Lett. 57, 1595–1603 (2003)

    Article  Google Scholar 

  36. M. Hema, S. Selvasekarapandian, A. Sakunthala, D. Arunkumar, H. Nithya, Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Phys. B 403, 2740–2747 (2008)

    Article  ADS  Google Scholar 

  37. J. Kawamura, R. Asayama, N. Kuwata, O. Kamishima, Ionic transport in glass and polymer: hierarchical structure and dynamics. Phys. Solid State Ionics 81, 193–246 (2006)

    Google Scholar 

  38. G. Hirankumar, S. Selvasekarapandian, M.S. Bhuvaneswari, R. Baskaran, M. Vijayakumar, Ag+ ion transport studies in a polyvinyl alcohol-based polymer electrolyte system. J. Solid State Electrochem. 10, 193–197 (2006)

    Article  Google Scholar 

  39. M. Ravi, Y. Pavani, K.K. Kumar, S. Bhavani, A.K. Sharma, V.V.R.N. Rao, Studies on electrical and dielectric properties of PVP:KBr O4 complexed polymer electrolyte films. Mater. Chem. Phys. 130, 442–448 (2011)

    Article  Google Scholar 

  40. J. Yang, X.J. Meng, M.R. Shen, L. Fang, J.L. Wang, T. Lin, J.L. Sun, J.H. Chu, Hopping conduction and low-frequency dielectric relaxation in 5 mol% Mn doped (Pb, Sr)TiO3 films. J. Appl. Phys. 104, 104113-104113-5 (2008)

    ADS  Google Scholar 

  41. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J. Phys. Chem. Solids 65, 1121–1125 (2004)

    Article  ADS  Google Scholar 

  42. S. Bhadra, N.K. Singha, D. Khastgir, Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr. Appl. Phys. 9, 396–403 (2009)

    Article  ADS  Google Scholar 

  43. R. Mishra, N. Baskaran, P.A. Ramakrishnan, K.J. Rao, Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112, 261–273 (1998)

    Article  Google Scholar 

  44. A.F. Farid, A.E. Bekheet, AC conductivity and dielectric properties of Sb2S3 films. Vacuum 59, 932–939 (2000)

    Article  Google Scholar 

  45. S. Shandilya, M. Tomar, K. Sreenivas, V. Gupta, Purely hopping conduction in c-axis oriented LiNbO3 thin films. J. Appl. Phys. 105, 094105-094105-7 (2009)

    Article  ADS  Google Scholar 

  46. H. Smaouia, L.E.L. Mirc, H. Guermazib, S. Agneld, A. Toureille, Study of dielectric relaxations in zinc oxide-epoxy resin nanocomposites. J. Alloys Compd. 477, 316–321 (2009)

    Article  Google Scholar 

  47. S.L. Agrawal, M. Singh, M. Tripathi, M.M. Dwiedi, K. Pandey, Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. J. Mater. Sci. 44, 6060–6068 (2009)

    Article  ADS  Google Scholar 

  48. R.J. Sengwa, S. Choudhary, S. Sankhla, Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends. Express Polym. Lett. 2, 800–809 (2008)

    Article  Google Scholar 

  49. J. Castillo, M. Chacon, R. Castillo, R.A. Vargas, P.R. Bueno, J.A. Varela, Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system. Ionics 15, 537–544 (2009)

    Article  Google Scholar 

  50. K. Mohomed, T.G. Gerasimov, F. Moussy, J.P. Harmon, A broad spectrum analysis of the dielectric properties of poly(2-hydroxyethyl methacrylate). Polymer 46, 3847–3855 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support from the University of Sulaimani, Faculty of Science and Science Education-Department of Physics for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B. Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1−x):AgI x (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites. Appl. Phys. A 122, 706 (2016). https://doi.org/10.1007/s00339-016-0235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0235-0

Keywords

Navigation