Skip to main content
Log in

Effect of combination methods for nanosilicon and graphite composites on the anode performance of lithium batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanosilicon materials are hardly used as anode materials of lithium batteries for the serious volume expansion during charging and discharging. Carbon-coated materials can reduce the volume effect of the silicon-improving cycle stability. In this paper, silicon/graphite (Si/G) composites were prepared by directly compounding silicon nanoparticles with graphite during size mixing, and (Si/G)@C composites were prepared by coating sucrose cracked carbon on the surface of silicon nanoparticles and graphite, and then spray drying the mixture and carbonized at 900 °С for 3 h under vacuum condition. The morphology and properties of the composites were compared by means of microstructure analysis and electrochemical performance tests. The results show that the improved electrochemical properties can be obtained by both composite methods. The Si/G composite delivers a high initial discharge capacity of approximately 597.9 mA h/g, with initial coulombic efficiency of 84.95%, and the reversible charge capacity is 423.5 mA h/g after 300 cycles with corresponding capacity retention ratio of 70.83%. The (Si/G)@C composite has better cycle life and coulombic efficiency with a discharge capacity of 572.9 mA h/g, and a capacity retention rate of 82.77% after 300 cycles. Coating carbon with silicon nanoparticles and graphite can improve the electrochemical properties of the (Si/G)@C composite electrode by preventing the crushing of active material particles, reducing the formation of SEI films, and enhancing the electrical conductivity of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K.S. Ryder, L. Gaines, P. Anderson, Nature. (2019). https://doi.org/10.1038/s41586-019-1682-5

    Article  Google Scholar 

  2. J.A. Sanguesa, V. Torres-Sanz, P. Garrido, F.J. Martinez, J.M. Marquez-Barja, Smart Cities. (2021). https://doi.org/10.3390/smartcities4010022

    Article  Google Scholar 

  3. J. Nzabahimana, Z.F. Liu, S.T. Guo, L.B. Wang, X.L. Hu, ChemSusChem (2020). https://doi.org/10.1002/cssc.201903155

    Article  Google Scholar 

  4. S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201902085

    Article  Google Scholar 

  5. Z.T. Liu, J.T. Du, H.N. Jia, W.C. Wang, M.X. Zhang, J.K. Ma, Y. Nie, T.Q. Liu, K.D. Song, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07500-2

    Article  Google Scholar 

  6. L. Sun, Y.X. Liu, R. Shao, J. Wu, R.Y. Jiang, Z. Jin, Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.01.042

    Article  Google Scholar 

  7. X.Z. Li, M. Zhang, S.X. Yuan, C.X. Lu, ChemElectroChem (2020). https://doi.org/10.1002/celc.202001060

    Article  Google Scholar 

  8. W. Li, J.P. Yang, Z.X. Wu, J.X. Wang, B. Li, S.S. Feng, Y.H. Deng, F. Zhang, D.Y. Zhao, J. Am. Chem. Soc. (2012). https://doi.org/10.1021/ja3037146

    Article  Google Scholar 

  9. H.W. Mi, X.D. Yang, Y.L. Li, P.X. Zhang, L.N. Sun, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.06.065

    Article  Google Scholar 

  10. X.Q. Li, Y.F. Xing, J. Xu, Q.B. Deng, L.H. Shao, Chem. Commun. (2020). https://doi.org/10.1039/c9cc07997a

    Article  Google Scholar 

  11. J.M. Su, C.C. Zhang, X. Chen, S.Y. Liu, T. Huang, A.S. Yu, J. Power Sources. (2018). https://doi.org/10.1016/j.jpowsour.2018.02.010

    Article  Google Scholar 

  12. X. Han, Z.Q. Zhang, S.Y. Chen, Y. Yang, J. Power Sources. (2020). https://doi.org/10.1016/j.jpowsour.2020.228245

    Article  Google Scholar 

  13. W.C. Wang, J.T. Du, Z.P. Xu, Z.T. Liu, H.A. Jia, T.J. Li, Y. Nie, K.D. Song, J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10215-1

    Article  Google Scholar 

  14. Y.L. Chen, Y. Hu, Z. Shen, R.Z. Chen, X. He, X.W. Zhang, Y.Q. Li, K.S. Wu, J. Power Sources. (2017). https://doi.org/10.1016/j.jpowsour.2016.12.089

    Article  Google Scholar 

  15. Q. Chen, Y. Nie, Y. Liu, J. Du, B. Ren, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0517-8

    Article  Google Scholar 

  16. Y. Man, R. Lin, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04052-9

    Article  Google Scholar 

  17. H.D. Chen, X.H. Hou, L.N. Qu, H.Q. Qin, Q. Ru, Y. Huang, S.J. Hu, K.H. Lam, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-5518-x

    Article  Google Scholar 

  18. X.Q. Hu, S.M. Huang, X.H. Hou, H.D. Chen, H.Q. Qin, Q. Ru, B.L. Chu, Silicon (2018). https://doi.org/10.1007/s12633-017-9624-z

    Article  Google Scholar 

  19. H.D. Chen, Z.L. Wang, X.H. Hou, L.J. Fu, S.F. Wang, X.Q. Hu, H.Q. Qin, Y.P. Wu, Q. Ru, X. Liu, S.J. Hu, Electrochim. Acta. (2017). https://doi.org/10.1016/j.electacta.2017.07.146

    Article  Google Scholar 

  20. G.Q. Wang, B. Xu, J. Shi, X.L. Lei, C.Y. Ouyang, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.11.237

    Article  Google Scholar 

  21. K.S. So, H. Lee, T.H. Kim, S. Choi, D.W. Park, Phys. Status Solidi. A (2014). https://doi.org/10.1002/pssa.201330059

    Article  Google Scholar 

  22. W.P. Liu, H.R. Xu, H.Q. Qin, Y.L. Lv, G.S. Zhu, X.X. Lei, F. Lin, Z.J. Zhang, L.H. Wang, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-019-04313-x

    Article  Google Scholar 

  23. M. Wang, X.R. Xiao, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.07.011

    Article  Google Scholar 

  24. W.P. Liu, H.R. Xu, H.Q. Qin, Y.L. Lv, G.S. Zhu, F. Lin, X.X. Lei, Z.J. Zhang, L.H. Wang, Silicon (2020). https://doi.org/10.1007/s12633-019-00320-4

    Article  Google Scholar 

  25. Y. Zhou, H.J. Guo, Z.X. Wang, X.H. Li, R. Zhou, W.J. Peng, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.07.279

    Article  Google Scholar 

  26. W.P. Liu, H.R. Xu, X.X. Lei, Y.L. Lv, G.S. Zhu, H.Q. Qin, F. Lin, L.H. Wang, J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08754-6

    Article  Google Scholar 

  27. N.T. Liu, J. Liu, D.Z. Jia, Y.D. Huang, J. Luo, X. Mamat, Y. Yu, Y.M. Dong, G.Z. Hu, Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2018.09.019

    Article  Google Scholar 

  28. Y. Zhang, H. Chu, L. Zhao, L. Yuan, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6357-0

    Article  Google Scholar 

  29. Q. Man, Y. An, C. Liu, H. Shen, S. Xiong, J. Feng, J. Energy Chem. (2023). https://doi.org/10.1016/j.jechem.2022.09.020

    Article  Google Scholar 

  30. W.P. Liu, H.R. Xu, H.Q. Qin, Y.L. Lv, F. Wang, G.S. Zhu, F. Lin, L.H. Wang, C.Y. Ni, J. Solid State Electrochem. (2019). https://doi.org/10.1007/s10008-019-04413-3

    Article  Google Scholar 

  31. Y.L. Lv, F. Lin, W.P. Liu, X.X. Lei, H.Q. Qin, Z.J. Zhang, L.H. Wang, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03672-5

    Article  Google Scholar 

  32. H.L. Liu, W. Yang, S. Che, Y. Li, C. Xu, X. Wang, G. Ma, G.Y. Huang, Y.F. Li, Carbon (2022). https://doi.org/10.1016/j.carbon.2022.05.018

    Article  Google Scholar 

  33. X. Liu, J. Lu, J. Jiang, Y. Jiang, Y. Gao, W. Li, B. Zhao, J. Zhang, Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148191

    Article  Google Scholar 

  34. H.I. Park, Y.K. Park, S.K. Kim, H.D. Jang, H. Kim, ACS Appl. Mater. Interfaces. (2021). https://doi.org/10.1021/acsami.1c08969

    Article  Google Scholar 

  35. C.L. Ma, Z.R. Wang, Y. Zhao, Y. Li, J. Shi, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156201

    Article  Google Scholar 

  36. M. Ratynski, B. Hamankiewicz, M. Krajewski, M. Boczar, A. Czerwinski, RSC Adv. (2018). https://doi.org/10.1039/c8ra02456a

    Article  Google Scholar 

  37. G.M. Liang, X.Y. Qin, J.S. Zou, L.Y. Luo, Y.Z. Wang, M.Y. Wu, H. Zhu, G.H. Chen, F.Y. Kang, B.H. Li, Carbon (2018). https://doi.org/10.1016/j.carbon.2017.11.013

    Article  Google Scholar 

  38. Y.C. Huang, H. Yang, T.Z. Xiong, D. Adekoya, W.T. Qiu, Z.M. Wang, S.Q. Zhang, M.S. Balogun, Energy Storage Mater. (2020). https://doi.org/10.1016/j.ensm.2019.11.001

    Article  Google Scholar 

  39. G. Li, J.Y. Li, F.S. Yue, Q. Xu, T.T. Zuo, Y.X. Yin, Y.G. Guo, Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.03.077

    Article  Google Scholar 

  40. J. Bareno, I.A. Shkrob, J.A. Gilbert, M. Klett, D.P. Abraham, J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.7b06118

    Article  Google Scholar 

  41. F. Zhang, X. Yang, Y.Q. Xie, N.B. Yi, Y. Huang, Y.S. Chen, Carbon (2015). https://doi.org/10.1016/j.carbon.2014.10.046

    Article  Google Scholar 

  42. A.K. Roy, M.J. Zhong, M.G. Schwab, A. Binder, S.S. Venkataraman, Z. Tomovic, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.5b12026

    Article  Google Scholar 

  43. Y. He, K.X. Xiang, W. Zhou, Y.R. Zhu, X.H. Chen, H. Chen, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.07.165

    Article  Google Scholar 

  44. T.S. Mu, P.J. Zuo, S.F. Lou, Q.R. Pan, Q. Li, C.Y. Du, Y.Z. Gao, X.Q. Cheng, Y.L. Ma, G.P. Yin, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.02.026

    Article  Google Scholar 

  45. Z. Yi, N. Lin, T.J. Xu, Y.T. Qian, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.04.101

    Article  Google Scholar 

  46. L. Shi, W.K. Wang, A.B. Wang, K.G. Yuan, Z.Q. Jin, Y.S. Yang, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta03974f

    Article  Google Scholar 

Download references

Funding

This work was supported by Guangxi Science and Technology Project (Grant No. ZY21195037), the Scientific and Technological Plan of Guilin City (Grant No. 20210207-4), the Scientific and Technological Plan of Liuzhou City (Grant No. 2022CCC0201), Quzhou Science and Technology Bureau (Grant No. 2021K26), and the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LZY22E010002, LZY23E010001).

Author information

Authors and Affiliations

Authors

Contributions

CN: Conceptualization, Methodology, Investigation, Formal Analysis, Writing—Original Draft. CX: Conceptualization, Data curation, Writing—Review and Editing. WL: Conceptualization, Resources, Supervision. ZS:Resources, Supervision. XL:collated documents. HQ:Data curation. WX:participated in writing papers

Corresponding authors

Correspondence to Chengdong Xia or Wenping Liu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, C., Xia, C., Liu, W. et al. Effect of combination methods for nanosilicon and graphite composites on the anode performance of lithium batteries. J Mater Sci: Mater Electron 34, 1432 (2023). https://doi.org/10.1007/s10854-023-10830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10830-y

Navigation