Skip to main content
Log in

The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The graphite@nano-Si@C composite was prepared by a designed hot reactor with stirring function by coating pitch carbon on the surface of graphite@nano-Si composite, and the effect of the carbon coating on the structure and electrochemical properties of the composite was also investigated by physical characterization and electrochemical measurement technologies. The pitch carbon coating can decrease the surface area of graphite@nano-Si@C composite, and there are no silicon nanopowders bared on the surface. The first discharge/charge capacity of graphite@nano-Si composite is 644.6 and 582.1 mAh g−1 with initial coulombic efficiency of 90.31%, and the capacity retention after 300 cycles is 66.03%. The pitch carbon coating layer impedes delithiation reaction leading to the increase of delithiation voltage, which also affects the charge transport ability of graphite@nano-Si@C composite before activation. However, the capacity retention of graphite@nano-Si@C composite corresponding to 10 wt% and 20 wt% pitch addition after 300 cycles reaches 80.90% and 84.51% with first discharge capacity of 623.6 and 618.8 mAh g−1, respectively, which is attributed to the pitch carbon coating layer can stable the SEI film and buffer volume expansion to enhance the cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    CAS  Google Scholar 

  2. Wang MY, Yin L, Li MQ, Luo SH, Wang C (2019) Low-cost heterogeneous dual-carbon shells coated silicon monoxide porous composites as anodes for high-performance lithium-ion batteries. J Colloid Interf Sci 549:225–235

    CAS  Google Scholar 

  3. Zuo XX, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143

    CAS  Google Scholar 

  4. Lu J, Chen Z, Pan F, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev 1:35–53

    CAS  Google Scholar 

  5. Dong QC, Yang J, Wu MY, Zhou XY, Zhang YZ, Wang WJ, Si WL, Huang W (2018) Template-free synthesis of cobalt silicate nanoparticles decorated nanosheets for high performance lithium ion batteries. ACS Sustain Chem Eng 6:15591–15597

    CAS  Google Scholar 

  6. Jin Y, Zhu B, Lu ZD, Liu N, Zhu J (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7:1700715

    Google Scholar 

  7. Trill JH, Tao C, Winter M, Passerini S, Eckert H (2011) NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries. J Solid State Electrochem 15(2):349–356

    CAS  Google Scholar 

  8. Xin X, Yao X, Zhang Y, Liu Z, Xu X (2012) Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. J Solid State Electrochem 16(8):2733–2738

    CAS  Google Scholar 

  9. Lu ZD, Liu N, Lee HW, Zhao J, Li WY, LiY Z, Cui Y (2015) Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9:2540–2547

    CAS  PubMed  Google Scholar 

  10. Wang B, Li W, Wu T, Guo J, Wen Z (2018) Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater 15:139–147

    Google Scholar 

  11. Wang GQ, Xu B, Shi J, Lei XL, Ouyang CY (2018) Confined Li ion migration in the silicon-graphene complex system: an ab initio investigation. Appl Surf Sci 436:505–510

    CAS  Google Scholar 

  12. BerlaL A, Lee SW, Cui Y, Nix WD (2015) Mechanical behavior of electrochemically lithiated silicon. J Power Sources 273:41–51

    Google Scholar 

  13. Zhou Y, Guo H, Yong Y, Wang Z, Li X, Zhou R (2017) Introducing reduced grapheme oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries. Mater Lett 195:164–167

    CAS  Google Scholar 

  14. Zhou Y, Guo HJ, Yan GH, Wang ZX, Li XH, Yang ZW, Zheng AX, Wang JX (2018) Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem Commun 54(30):3755–3758

    CAS  Google Scholar 

  15. Roy AK, Zhong M, Schwab MG, Binder A, Venkataraman SS, Tomovic Z (2016) Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl Mater Interfaces 8:7343–7348

    CAS  PubMed  Google Scholar 

  16. Fang M, Wang Z, Chen X, Guan S (2018) Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries. Appl Surf Sci 436:345–353

    CAS  Google Scholar 

  17. Chen HD, Shen KX, Hou XH, Zhang GZ, Wang SF (2019) Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries. Appl Surf Sci 470:496–506

    CAS  Google Scholar 

  18. Ma Y, Younesi R, Pan R, Liu C, Zhu J, Wei B, Edström K (2016) Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ storage and flexible integrated configuration. Adv Funct Mater 26:6797–6806

    CAS  Google Scholar 

  19. Kaushik K, Marco-Tulio FR, Stephen ET, Ilya AS, Daniel PA (2018) Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes. Electrochim Acta 280:221–228

    Google Scholar 

  20. Li Y, Xu GJ, Yao YF, Xue LG, Zhang S, Lu Y, Toprakci O, Zhang X (2013) Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive. J Solid State Electrochem 17(5):1393–1399

    CAS  Google Scholar 

  21. Jing SL, Jiang H, Hu YJ, Shen JH (2015) Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv Funct Mater 25:5395–5401

    CAS  Google Scholar 

  22. Zhang R, Du Y, Li D, Shen D, Yang J, Guo Z, Liu HK, Elzatahry AA, Zhao D (2014) Highly reversible and large lithium storage in mesoporoussi/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv Mater 26:6749–6755

    CAS  PubMed  Google Scholar 

  23. Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L (2017) Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11(7):7476–7484

    CAS  PubMed  Google Scholar 

  24. LiY CB, Li T, Kang L, Xu S, Zhang D, Xie L, Liang W (2016) One-step synthesis of hollow structured Si/C composites based on expandable microspheres as anodes for lithium ion batteries. Electrochem Commun 72:69–73

    Google Scholar 

  25. Xu ZL, Zhang B, Kim JK (2014) Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy 6:27–35

    Google Scholar 

  26. Zhang F, Yang X, Xie Y, Yi N, Huang Y, Chen Y (2015) Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon 82:161–167

    CAS  Google Scholar 

  27. Chen HD, Hou XH, Chen FM, Wang SF, Wu B, Ru Q, Qin HQ, Xia YC (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    CAS  Google Scholar 

  28. Yu ZZ, Tian BB, LiY FDY, Yang DG, Zhu GS, Cai M, Yan DL (2019) Lithium titanate matrix-supported nanocrystalline silicon film as an anode for lithium-ion batteries. ACS Appl Mater Interfaces 11:534–540

    CAS  PubMed  Google Scholar 

  29. Liang GM, Qin XY, Zou JS, Luo LY, Wang YZ, Wu MY, Zhu H, Chen GH, Kang FY, Li BH (2018) Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127:424–431

    CAS  Google Scholar 

  30. Wang M, Xiao X (2016) Investigation of the chemo-mechanical coupling in lithiation/delithiation of amorphous Si through simulations of Si thin films and Si nanospheres. J Powers Sources 326:365–376

    CAS  Google Scholar 

  31. Kaushik K, Ilya AS, Richard TH, Cameron P, Javier B, Daniel PA (2017) Auger electrons as probes for composite micro- and nanostructured materials: application to solid electrolyte interphases in graphite and silicon-graphite electrodes. J Phys Chem C 121:23333–23346

    Google Scholar 

  32. Laïk B, Ung D, Caillard A, Cojocaru CS, Pribat D, Pereira-Ramos JP (2010) An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries. J Solid State Electrochem 14(10):1835–1839

    Google Scholar 

  33. Erwin H, Harald S (2018) Lithium permeability increase in nanosized amorphous silicon layers. J Phys Chem C 122:28528–28536

    Google Scholar 

  34. Javier B, Ilya AS, James AG, Matilda K, Daniel PA (2017) Capacity fade and its mitigation in Li-ion cells with silicon-graphite electrodes. J Phys Chem C 121:20640–20649

    Google Scholar 

  35. Wang T, Zhu J, Chen Y, Yang HG, Qin Y, Li F, Cheng QF, Yu XZ, Xu Z, Lu BG (2017) Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J Mater Chem A 5:4809–4817

    CAS  Google Scholar 

  36. Aliya M, Albina J, Myung ST, Kim SS, Zhumabay B (2018) A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today Energy 9:49–66

    Google Scholar 

  37. Yi Z, Lin N, Xu TJ, Qian YT (2018) TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem Eng J347:214–222

    Google Scholar 

  38. So KS, Lee HJ, Kim TH (2014) Synthesis of silicon nanopowderss from silane gas by RF thermal plasma. Phys. Status Solidi A 211:310–315

    CAS  Google Scholar 

  39. Chen HD, Wang ZL, Hou XH, Fu LJ, Wang SF, Hu XQ, Qin HQ, Wu YP, Ru QP, Liu X, Hu SJ (2017) Mass-producible method for preparation of a carbon-coated graphite@plasmanano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    CAS  Google Scholar 

  40. Yana M, David Z (2017) Operando plasmon-enhanced Raman spectroscopy in silicon anodes for Li-ion battery. J Nanoparticle Res 19:372

    Google Scholar 

  41. Yoshifumi I, Kazunori H, Kaveh E, Katsuhiko S, GuoQX HZJ, Toshihiro A, David JS (2014) Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci 49:6565–6569

    Google Scholar 

  42. Michan AL, Leskes M, Grey CP (2016) Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products. Chem Mater 28:385–398

    CAS  Google Scholar 

  43. Wang HR, Chew HB (2017) Nanoscale mechanics of the solid electrolyte interphase on lithiated-silicon electrodes. ACS Appl Mater Interfaces 9:25662–25667

    CAS  PubMed  Google Scholar 

  44. Zhou Y, Guo HJ, Wang ZX, Li XH, Zhou R, Peng WJ (2017) Improved electrochemical performance of Si/C material based on the interface stability. J Alloy Compd 725:1304–1312

    CAS  Google Scholar 

  45. Cao CT, Iwnetim IA, Eric S, Badri S, Jia CJ, Brian M, Thomas PD, Kristin AP, Steinrück HG (2019) Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3:762–781

    CAS  Google Scholar 

  46. Schroder KW, Dylla AG, Harris SJ, Webb LJ, Stevenson KJ (2014) Role of surface oxides in the formation of solid–electrolyte interphases at silicon electrodes for lithium-ion batteries. ACS Appl Mater Interfaces 6:21510–21524

    CAS  PubMed  Google Scholar 

  47. He W, Tian HJ, Xin FX, Han WQ (2015) Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries. J Mater Chem A 3:17956–17962

    CAS  Google Scholar 

  48. Shi L, Wang WK, Wang AB, Yuan KG, Jin ZQ, Yang YS (2015) Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J Mater Chem A 3:18190–18197

    CAS  Google Scholar 

  49. Zhang J, Gu J, He H, Li M (2017) High-capacity nano-Si@SiOx@C anode composites for lithium-ion batteries with good cyclic stability. J Solid State Electrochem 21(8):2259–2267

    CAS  Google Scholar 

  50. Wang QT, Li RR, Zhou XZ, Li J, Lei ZQ (2016) Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries. J Solid State Electrochem 20(5):1331–1336

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Innovation-Driven Development Project (AA17204022, AA18118001), the Science and Technology Plan of China Nonferrous Group (2016KJJH03), and the Scientific and Technological Plan of Guilin City (201607010322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huarui Xu or Haiqing Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, H., Qin, H. et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries. J Solid State Electrochem 23, 3363–3372 (2019). https://doi.org/10.1007/s10008-019-04413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04413-3

Keywords

Navigation