Skip to main content
Log in

Well-dispersed double carbon layers coated on Si nanoparticles and the enhanced electrochemical performance for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The amorphous carbon was coated on the surface of the nano-silicon with citric acid by a simple mechanical stirring in water bath method and high temperature pyrolysis method, and then the carbon-coated silicon composite material(Si@C) was coated with polyvinyl alcohol by the secondary mechanical stirring and high temperature pyrolysis to obtain double carbon layer-coated silicon composite material (Si@C@C). The microstructure and surface morphology of Si@C@C were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of Si@C@C were investigated by constant current charge–discharge, cyclic voltammetry, and electrochemical impedance spectra techniques. The study found that the first reversible specific capacity of Si@C@C was 1669 mAh/g at the current density of 0.1 C. The specific capacity remained at 1300 mAh/g, while the capacity retention rate was 77.9% after 200 cycles. The cyclic stability of Si@C@C was higher than that of Si@C, which greatly improved the electrochemical performance of silicon-based materials as anode materials for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fotouhi, D.J. Auger, K. Propp, S. Longo, M. Wild, A review on electric vehicle battery modeling: from lithium-ion toward lithium–sulphur. Renew. Sustain. Energy Rev. 56, 1008–1021 (2016)

    Article  CAS  Google Scholar 

  2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Mater. Sustain. Energy 7, 171–179 (2010)

    Article  Google Scholar 

  3. X.J. Bai, Y.Y. Yu, H.H. Kung, B. Wang, J.M. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42–48 (2016)

    Article  CAS  Google Scholar 

  4. K. Feng, W. Ahn, G. Lui, H.W. Park, A.G. Kashkooli, G.P. Jiang, X.L. Wang, X.C. Xiao, Z.W. Chen, Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 19, 187–197 (2016)

    Article  CAS  Google Scholar 

  5. B.A. Boukamp, G.C. Lesh, R.A. Huggins, ChemInform abstract: all-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)

    Article  CAS  Google Scholar 

  6. W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    Article  CAS  Google Scholar 

  7. T. Zhang, L.J. Fu, J. Gao, L.C. Yang, Y.P. Wu, H.Q. Wu, Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl. Chem. 78, 1889–1896 (2009)

    Article  Google Scholar 

  8. M. Gu, S. Ko, S. Yoo, E. Lee, S.H. Min, S. Park, B.S. Kim, Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes. J. Power Sources 300, 351–357 (2015)

    Article  CAS  Google Scholar 

  9. S. Li, X.Y. Qin, H.R. Zhang, J.X. Wu, Y.B. He, B. Li, F.Y. Kang, Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochem. Commun. 49, 98–102 (2014)

    Article  Google Scholar 

  10. H.R. Zhang, X.Y. Qin, J.X. Wu, Y.B. He, H.D. Du, B.H. Li, F.Y. Kang, Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J. Mater. Chem. A 3, 7112–7120 (2015)

    Article  CAS  Google Scholar 

  11. B.L. Jiang, S. Zeng, H. Wang, D.T. Liu, J.F. Qian, Y.L. Cao, H.X. Yang, X.P. Ai, Dual core–shell structured Si@SiOx@C nanocomposite synthesized via a one-sep pyrolysis method as a highly stable anode material for lithium-Ion batteries. ACS Appl. Mater. Interfaces 8, 31611–31616 (2016)

    Article  CAS  Google Scholar 

  12. Y. Hwa, W.S. Kim, S.H. Hong, H.J. Sohn, High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 71, 201–205 (2012)

    Article  CAS  Google Scholar 

  13. D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, Y.F. Liu, High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 256, 190–199 (2014)

    Article  CAS  Google Scholar 

  14. D. Shao, D.P. Tang, J.W. Yang, Y.W. Li, L.Z. Zhang, Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J. Power Sources 297, 344–350 (2015)

    Article  CAS  Google Scholar 

  15. W. Li, K. Cao, H. Wang, J. Liu, L. Zhou, H. Yao, Carbon coating may expedite the fracture of carbon-coated silicon core–shell nanoparticles during lithiation. Nanoscale 8, 5254–5259 (2016)

    Article  CAS  Google Scholar 

  16. Y.T. Yan, Z.X. Xu, C.C. Liu, H.L. Dou, J.J. Wei, X.L. Zhao, J.J. Ma, Q. Dong, H.S. Xu, Y.S. He, Z.F. Ma, X.W. Yang, Rational design of the robust janus shell on silicon anodes for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 17375–17383 (2019)

    Article  CAS  Google Scholar 

  17. Y.H. Xu, G.P. Yin, Y.L. Ma, P.J. Zuo, X.Q. Cheng, Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 20, 3216–3220 (2010)

    Article  CAS  Google Scholar 

  18. L.Y. Yang, H.Z. Li, J. Liu, Z.Q. Sun, S.S. Tang, M. Lei, Dual yolk-shell structure of carbon and silica-coated silicon for high performance lithium-ion batteries. Sci. Rep. 5, 10908–10917 (2015)

    Article  CAS  Google Scholar 

  19. X.Z. Yuan, C.J. Song, H.J. Wang, J.J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer, London, 2010)

    Book  Google Scholar 

  20. P.A. Peña, M. Haro, M.E. Rincón, J. Bisquert, G.G. Belmonte, Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. J. Power Sources 268, 397–403 (2014)

    Article  Google Scholar 

  21. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Central government Guided Local Science and Technology Development Fund of China (No. 830170778). The authors would like to thank Ruoyu Hong, Hui Wang for providing other information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-ying Lin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, Y., Lin, Ry. Well-dispersed double carbon layers coated on Si nanoparticles and the enhanced electrochemical performance for lithium ion batteries. J Mater Sci: Mater Electron 31, 14912–14920 (2020). https://doi.org/10.1007/s10854-020-04052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04052-9

Navigation