Skip to main content

Advertisement

Log in

Porous dual carbon framework coated silicon nanoparticles for high-performance lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon-based materials are promising materials for lithium-ion battery anodes with high specific capacities. However, the volume expansion of silicon during charging and discharging leads to the destruction of the material structure, increased mechanical stress, solid electrolyte interface (SEI) film rupture, and rapid capacity decay. Here, a composite material with a porous double-layer carbon structure of coated silicon nanoparticles (Si@C@PMP) is fabricated by sequentially coating the surface of silicon nanoparticles with resorcinol-formaldehyde resin and mesophase pitch-ordered soft carbon. The porous mesophase pitch coating skeleton is formed by the action of the templating agent calcium carbonate. The cross-linked double-layer carbon structure could accommodate the volume expansion of silicon and improve the electrical conductivity and structural stability of the electrode. The microstructure and electrochemical analysis reveal that Si@C@PMP possesses excellent structural and cyclic stability. The results show that the anode material has a capacity of 774 mA h g−1 after 300 cycles at 0. 2 A g−1. Even after 500 cycles at 1 A g−1, it still has a good capacity of 646 mA h g−1 with only 13.6% electrode thickness expansion. This method may provide an idea for preparing stable silicon/carbon composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Jin, Z.W. Cui, X.Y. Long, M. Millan, G.M. Yuan, Z.J. Dong, Y. Cong, J. Zhang, Y.J. Li, X.K. Li, Understanding the correlation between microstructure and electrochemical performance of hybridized pitch cokes for lithium-ion battery through tailoring their evolutional structures from ordered soft carbon to disordered hard carbon. J. Alloy Compd. 887, 161357 (2021)

    Article  CAS  Google Scholar 

  2. C.L. Ma, Z.R. Wang, Y. Zhao, Y. Li, J. Shi, A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. J. Alloy Compd. 844, 156201 (2020)

    Article  CAS  Google Scholar 

  3. W. Luo, Y.X. Wang, S.L. Chou, Y.F. Xu, W. Li, B. Kong, S.X. Dou, H.K. Liu, J.P. Yang, Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27, 255–264 (2016)

    Article  CAS  Google Scholar 

  4. J. Xie, L. Tong, L.W. Su, Y.W. Xu, L.B. Wang, Y.H. Wang, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 342, 529–536 (2017)

    Article  CAS  Google Scholar 

  5. D. Lee, A. Kondo, S. Lee, S. Myeong, S. Sun, I. Hwang, T. Song, M. Naito, U. Paik, Controlled swelling behavior and stable cycling of silicon/graphite granular composite for high energy density in lithium ion batteries. J. Power Sources 457, 228021 (2020)

    Article  CAS  Google Scholar 

  6. Y.L. He, F. Han, F. Wang, J. Tao, H. Wu, F.Q. Zhang, J.S. Liu, Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage. Electrochim. Acta 373, 137924 (2021)

    Article  CAS  Google Scholar 

  7. H.W. Mi, X.D. Yang, Y.L. Li, P.X. Zhang, L.N. Sun, A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chem. Eng. J. 351, 103–109 (2018)

    Article  CAS  Google Scholar 

  8. J.P. Yang, Y. Wang, S. Chou, R.Y. Zhang, Y.F. Xu, J.W. Fan, W. Zhang, H. Kun Liu, D.Y. Zhao, Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133–142 (2015)

    Article  CAS  Google Scholar 

  9. B.B. Deng, L. Shen, Y.G. Liu, T. Yang, M.S. Zhang, R.J. Liu, Z.H. Huang, M.H. Fang, X.W. Wu, Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery. Chin. Chem Lett. 28, 2281–2284 (2017)

    Article  CAS  Google Scholar 

  10. S.S. Zhu, J.B. Zhou, Y. Guan, W.L. Cai, Y.Y. Zhao, Y.C. Zhu, L.Q. Zhu, Y.C. Zhu, Y.T. Qian, Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries. Small 14, 1802457 (2018)

    Article  Google Scholar 

  11. D.C. Lin, Z.D. Lu, P. Hsu, H.R. Lee, N. Liu, J. Zhao, H.T. Wang, C. Liu, Y. Cui, A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 8, 2371–2376 (2015)

    Article  CAS  Google Scholar 

  12. X.S. Lv, W. Wei, B.B. Huang, Y. Dai, Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design. J. Mater. Chem. A 7, 2165–2171 (2019)

    Article  CAS  Google Scholar 

  13. B. Key, M. Morcrette, J. Tarascon, C.P. Grey, Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (De)lithiation mechanisms. J. Am. Chem. Soc. 133, 503–512 (2011)

    Article  CAS  Google Scholar 

  14. S.H. Choi, G. Nam, S. Chae, D. Kim, N. Kim, W.S. Kim, J. Ma, J. Sung, S.M. Han, M. Ko, H.W. Lee, J. Cho, Robust pitch on silicon nanolayer–embedded graphite for suppressing undesirable volume expansion. Adv. Energy Mater. 9, 1803121 (2019)

    Article  Google Scholar 

  15. Y. Tian, Y.L. An, J.K. Feng, Flexible and freestanding Silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Inter. 11, 10004–10011 (2019)

    Article  CAS  Google Scholar 

  16. R.T. Xu, G. Wang, T.F. Zhou, Q. Zhang, H. Cong, S. Xin, J. Rao, C.F. Zhang, Y.K. Liu, Z.P. Guo, S. Yu, Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy 39, 253–261 (2017)

    Article  CAS  Google Scholar 

  17. W. Wang, P.N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233–2241 (2010)

    Article  CAS  Google Scholar 

  18. D. Kowalski, J. Mallet, S. Thomas, A.W. Nemaga, J. Michel, C. Guery, M. Molinari, M. Morcrette, Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries. J. Power Sources 361, 243–248 (2017)

    Article  CAS  Google Scholar 

  19. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)

    Article  CAS  Google Scholar 

  20. T.H. Hwang, Y.M. Lee, B. Kong, J. Seo, J.W. Choi, Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)

    Article  CAS  Google Scholar 

  21. H.P. Jia, P.F. Gao, J. Yang, J.L. Wang, Y.N. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036–1039 (2011)

    Article  CAS  Google Scholar 

  22. H. Kim, M. Seo, M. Park, J. Cho, A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010)

    Article  CAS  Google Scholar 

  23. Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927–7930 (2012)

    Article  CAS  Google Scholar 

  24. W. Liu, J.Z. Wang, J.T. Wang, X.Z. Guo, H. Yang, Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode. J. Alloy Compd. 874, 159921 (2021)

    Article  CAS  Google Scholar 

  25. G.B. Zhu, Y.Y. Gu, S. Heng, Y. Wang, Q.T. Qu, H.H. Zheng, Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability. Electrochim. Acta 323, 1 (2019)

    Article  Google Scholar 

  26. X.Q. Dai, H.T. Liu, X. Liu, Z.L. Liu, Y.S. Liu, Y.H. Cao, J.Y. Tao, Z.Q. Shan, Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries. Chem. Eng. J. 418, 129468 (2021)

    Article  CAS  Google Scholar 

  27. I.H. Son, J. Hwan Park, S. Kwon, S. Park, M.H. Rümmeli, A. Bachmatiuk, H.J. Song, J. Ku, J.W. Choi, J. Choi, S. Doo, H. Chang, Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015)

    Article  CAS  Google Scholar 

  28. P. Li, G.Q. Zhao, X.B. Zheng, X. Xu, C.H. Yao, W.P. Sun, S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018)

    Article  Google Scholar 

  29. G. Fang, X.L. Deng, J.Z. Zou, X.R. Zeng, Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochim. Acta 295, 498–506 (2019)

    Article  CAS  Google Scholar 

  30. Z.T. Liu, J.T. Du, H.N. Jia, W.C. Wang, M.X. Zhang, J.K. Ma, Y. Nie, T.Q. Liu, K.D. Song, Design of hierarchical buffer structure for silicon/carbon composite as a high-performance Li-ion batteries anode. J. Mater. Sci.: Mater. Electron. 33, 3002–3015 (2022)

    CAS  Google Scholar 

  31. Z.T. Liu, J.T. Du, H.N. Jia, W.C. Wang, M.X. Zhang, T.J. Li, Y. Nie, T.Q. Liu, K.D. Song, Facile synthesis of hybrid pitch-based soft carbon as high-performance silicon/carbon anodes for lithium-ion batteries. Ionics 28, 3709–3718 (2022)

    Article  CAS  Google Scholar 

  32. Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing, D. Wang, H. Yin, A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Mater. 34, 768–777 (2021)

    Article  Google Scholar 

  33. J.S. Kim, W. Pfleging, R. Kohler, H.J. Seifert, T.Y. Kim, D. Byun, H. Jung, W. Choi, J.K. Lee, Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13–20 (2015)

    Article  CAS  Google Scholar 

  34. Y. Qiao, K.Z. Jiang, H. Deng, H.S. Zhou, A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nat. Catal. 2, 1035–1044 (2019)

    Article  CAS  Google Scholar 

  35. B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat, X. Li, L. Zhi, S. Park, R.S. Ruoff, Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13, 2307–2315 (2019)

    CAS  Google Scholar 

  36. B.L. Xing, C.T. Zhang, Q.R. Liu, C.X. Zhang, G.X. Huang, H. Guo, J.L. Cao, Y.J. Cao, J.L. Yu, Z.F. Chen, Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries. J. Alloy Compd. 795, 91–102 (2019)

    Article  CAS  Google Scholar 

  37. G. Yang, H. Han, T. Li, C. Du, Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 50, 3753–3765 (2012)

    Article  CAS  Google Scholar 

  38. Z.D. Lu, N. Liu, H. Lee, J. Zhao, W.Y. Li, Y.Z. Li, Y. Cui, Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. Acs Nano 9, 2540–2547 (2015)

    Article  CAS  Google Scholar 

  39. S. Batool, M. Idrees, J. Kong, J.X. Zhang, S.F. Kong, M.Y. Dong, H. Hou, J.C. Fan, H.G. Wei, Z.H. Guo, Assessment of the electrochemical behaviour of silicon@carbon nanocomposite anode for lithium-ion batteries. J. Alloy Compd. 832, 154644 (2020)

    Article  CAS  Google Scholar 

  40. C.S. Song, B.X. Zhao, S.Y. Chen, J.Y. Ma, H.B. Du, Nickel-assisted one-pot preparation of graphenic carbon matrices embedded with silicon nanoparticles as anode materials for lithium ion batteries. Carbon 179, 266–274 (2021)

    Article  CAS  Google Scholar 

  41. Y.H. Xu, Y.J. Zhu, F.D. Han, C. Luo, C.S. Wang, 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5, 1400753 (2015)

    Article  Google Scholar 

  42. L. Zhang, C.R. Wang, Y.H. Dou, N.Y. Cheng, D.D. Cui, Y. Du, P.R. Liu, M. Al-Mamun, S.Q. Zhang, H.J. Zhao, A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem. Int. Ed. 58, 8824–8828 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Youth Science Foundation Program No. 21908206), the Key Science and Technology Project of Henan Province, China (No. 202102210213) and the Grant. YLU-DNL Fund of China (No. 2021015).

Funding

Funding was provided by the National Natural Science Foundation of China (Youth Science Foundation Program No. 21908206), the Key Science and Technology Project of Henan Province, China (No. 202102210213) and the Grant. YLU-DNL Fund of China (No. 2021015).

Author information

Authors and Affiliations

Authors

Contributions

WW: Investigation, Methodology, Data compilation, Writing-original draft. JD: Methodology, Writing-Review & Editing, Funding Acquisition. ZX: Resources, ZL: Conceptualization, Methodology, Visualization. HJ: Resources, Formal analysis. TL: Resources. YN: Supervision, Funding Acquisition. KS: Supervision, Funding Acquisition.

Corresponding authors

Correspondence to Juntao Du, Yi Nie or Kedong Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15910.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Du, J., Xu, Z. et al. Porous dual carbon framework coated silicon nanoparticles for high-performance lithium-ion batteries. J Mater Sci: Mater Electron 34, 809 (2023). https://doi.org/10.1007/s10854-023-10215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10215-1

Navigation