Skip to main content

Advertisement

Log in

Preparation and electrochemical properties of core-shelled silicon–carbon composites as anode materials for lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, core-shelled silicon–carbon composites as anode materials for lithium-ion batteries (LIBs) are prepared by a cost-effective method of the combined mechanical ball milling and high-temperature heat treatment. The microstructures and morphologies of such anode materials with different silicon contents are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. Both coin and soft-packed LIBs are fabricated using these silicon–carbon composites as anode materials. The batteries can give high capacities of 377.7 mA h g−1, 418.5 mA h g−1, 450.9 mA h g−1, and 500.1 mA h g−1 at the silicon contents of 2.0%, 6.5%, 9.5%, and 14.5%, respectively. The effects of silicon content on the coulomb efficiency, low-temperature capacity, resistance, and cycle life are also studied, and the results show that a silicon content of 9.5% can give the best battery performance. Considering that the process has no surfactant, corrosive acidic or alkaline reagent added, and that the ball milling and heat treatment are efficient, cost-effective, and environmentally friendly, it can be expected that the fabrication process described in this paper should be usable for large-scale production of silicon–carbon composite materials for anodes of LIBs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu J, Chen Z, Pan F, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev 1:35–53

    Article  Google Scholar 

  2. Ding Y, Cano ZP, Yu A, Lu J, Chen Z (2019) Automotive li-ion batteries: current status and future perspectives. Electrochem Energy Rev 2:1–28

    Article  Google Scholar 

  3. Dou F, Shi L, Chen G, Zhang D (2019) Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem Energy Rev 2:149–198

    Article  Google Scholar 

  4. Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79–104

    Article  CAS  Google Scholar 

  5. Su X, Wu Q, Li J, Xiao X, Lott A, Shelden BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1–23

    Article  CAS  Google Scholar 

  6. Wang J, Xu T, Huang X, Li H, Ma T (2016) Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv 6:87778–87790

    Article  CAS  Google Scholar 

  7. Shivaraju GC, Sudakar C, Prakash AS (2019) High-rate and long-cycle life performance of nano-porous nano-silion derived from mesoporous NCM-41 as an anode for lithium-ion battery. Electrochim Acta 294:357–364

    Article  CAS  Google Scholar 

  8. Kwon Y, Park G, Cho J (2007) Synthesis and electrochemical properties of lithium-electroactive surface-stablilized silicon auantum dots. Electrochim Acta 52:4663–4668

    Article  CAS  Google Scholar 

  9. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Envivon Sci 4:56–72

    Article  CAS  Google Scholar 

  10. Ji J, Ji H, Zhang LL, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater 25(33):4673–4677

    Article  CAS  PubMed  Google Scholar 

  11. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nano Technol 7:310–315

    Article  CAS  Google Scholar 

  12. Hong I, Scrosati B, Croce F (2013) Mesoporous, Si/C composite anode for Li battery obtained by magnesium-thermal reduction process. Solid State Ionics 232:24–28

    Article  CAS  Google Scholar 

  13. Chen T, Wu J, Zhang Q, Su X (2017) Recent advancement of SiOx, based anodes for lithium-ion batteries. J Power Sources 363:126–144

    Article  CAS  Google Scholar 

  14. Yang J, Takeda Y, Imanishi N, Capglia C, Xie JY, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. Solid State Ionics Diffus React 152:125–129

    Article  Google Scholar 

  15. Zhang T, Gao J, Zhang HP, Yang LC, Wu YP, Wu HQ (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Soc 9:886–890

    CAS  Google Scholar 

  16. Chen Y, Xu M, Zhang Y, Lucht BL, Bose A (2015) All-aqueous directed assembly strategy for forming high-capacity, stable silicon/carbon anodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:21391–21397

    Article  CAS  PubMed  Google Scholar 

  17. Kim JS, Pfleging W, Kohler R, Seifert HJ, Kim TY, Byun D, Jung H-G, Choi W, Lee JK (2015) Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium ion batteries. J Power Sources 279:13–20

    Article  CAS  Google Scholar 

  18. Chen S, Shen L, Van Aken PA, Maier J, Yu Y (2017) Dual functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1–8

    Google Scholar 

  19. Su H, Barragan AA, Geng L, Long D, Ling L, Bozhilov KN, Mangolini L, Guo J (2017) Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries. Angew Chem Int Ed 56:10780–10785

    Article  CAS  Google Scholar 

  20. Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2019) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    Article  CAS  Google Scholar 

  21. Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y (2018) Milled flake graphite/plasma nano-silicon@composite with void sandwich structure for high performance as lithium ion battery anode at high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    Article  CAS  Google Scholar 

  22. Li M, Hou X, Sha Y, Wang J, Hu S, Liu X, Shao Z (2014) Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources 248:721–728

    Article  CAS  Google Scholar 

  23. Jo YN, Kim Y, Kim JS, Song JH, Kim KJ, Kwag CY, Lee DJ, Park CW, Kim YJ (2010) Si-graphite composites as anode materials for lithium secondary batteries. J Power Sources 195:6031–6036

    Article  CAS  Google Scholar 

  24. United States Idsho National Engineering & Environmental Laboratory (2003) FreedomCAR battery test manual for power assist hybrid electric vehicles. DOE/ID-11069

  25. Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M (2013) A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium batteries. Electrochim Acta 104:117–123

    Article  CAS  Google Scholar 

  26. Liu Z, Guan D, Yu Q, Xu L, Zhuang Z, Zhu T, Zhao D, Zhou L, Mai L (2018) Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater 13:112–118

    Article  CAS  Google Scholar 

  27. Smith K, Wang CY (2006) Power and thermal characterization of a lithium ion battery pack for hybrid-electric vehicles. J Power Sources 160:662–673

    Article  CAS  Google Scholar 

  28. Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium ion battery. J Power Sources 195:2961–2968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiujun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, J. & Zhang, J. Preparation and electrochemical properties of core-shelled silicon–carbon composites as anode materials for lithium-ion batteries. J Appl Electrochem 49, 1123–1132 (2019). https://doi.org/10.1007/s10800-019-01356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01356-5

Keywords

Navigation