Skip to main content
Log in

Separating nucleation from growth for high-yield synthesis of thin silver nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inactive gas (N2 or Ar) and oxygen scavenger (Fe2+ or Cu+) are used for the synthesis of silver nanowires (AgNWs) with thin diameter (< 30 nm) and high aspect ratio (> 1000), but the yield is always low. Due to the oxidative etching, oxygen largely influences silver nanostructures not only in the nucleation process but also in the growth period. Herein, we systematically studied AgNW synthesis under the condition of an atmosphere with different oxygen contents (O2, air, and N2). We separated the formation of Ag-twinned seeds and nanoparticles in the incubation and the elongation of AgNWs in the growth, which are both sensitive to the oxygen content. AgNWs with 28.5 nm diameter, 2500 aspect ratio, and 91% yield were obtained when the sample was protected in N2 (incubation) and refluxed with air (growth), resulting in a conductive film with a sheet resistance of 48 Ω/sq at a transmittance of 97.0%, comparable to that of ITO. The growth mechanism of such high-quality AgNWs was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Zhai, W. Wang, J. Jia, P. Dong, One-step synthesis of ultra-high aspect ratio silver nanowires for high-performance flexible transparent conductive films. J. Mater. Sci. Mater. Electron. 32, 15622–15632 (2021)

    Article  CAS  Google Scholar 

  2. Y. Zhu, Y. Deng, P. Yi, L. Peng, X. Lai, Z. Lin, Flexible transparent electrodes based on silver nanowires: material synthesis, fabrication, performance, and applications. Adv. Mater. Technol. 4, 1900413 (2019)

    Article  CAS  Google Scholar 

  3. W. Zhang, W. Song, J. Huang, L. Huang, T. Yan, J. Ge, R. Peng, Z. Ge, Graphene:silver nanowire composite transparent electrode based flexible organic solar cells with 13.4% efficiency. J. Mater. Chem. A 7, 22021–22028 (2019)

    Article  CAS  Google Scholar 

  4. H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou, Hydrophilic–hydrophobic silver nanowire-paper based SERS substrate for in situ detection of furazolidone under various environments. Appl. Surf. Sci. 556, 149748 (2021)

    Article  CAS  Google Scholar 

  5. D. Jia, Y. Zhao, W. Wei, C. Chen, G. Lei, M. Wan, J. Tao, S. Li, S. Ji, C. Ye, Synthesis of very thin Ag nanowires with fewer particles by suppressing secondary seeding. CrystEngComm 19, 148–153 (2017)

    Article  CAS  Google Scholar 

  6. S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)

    Article  CAS  Google Scholar 

  7. B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 15, 6722–6726 (2015)

    Article  CAS  Google Scholar 

  8. K. Zhang, Y. Du, S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Org. Electron. 26, 380–385 (2015)

    Article  CAS  Google Scholar 

  9. X.M. Wang, L. Chen, E. Sowade, R.D. Rodriguez, E. Sheremet, C.M. Yu, R.R. Baumann, J.J. Chen, Ultra-uniform and very thin Ag nanowires synthesized via the synergy of Cl(−), Br(−) and Fe(3+) for transparent conductive films. Nanomaterials 10, 237 (2020)

    Article  CAS  Google Scholar 

  10. E.J. Lee, Y.H. Kim, D.K. Hwang, W.K. Choi, J.Y. Kim, Synthesis and optoelectronic characteristics of 20 nm diameter silver nanowires for highly transparent electrode films. RSC Adv. 6, 11702 (2016)

    Article  CAS  Google Scholar 

  11. K.E. Korte, S.E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J. Mater. Chem. 18, 437–441 (2008)

    Article  CAS  Google Scholar 

  12. R.R. da Silva, M. Yang, S.I. Choi, M. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H. Camargo, S.J. Ribeiro, Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10, 7892–7900 (2016)

    Article  Google Scholar 

  13. Y. Liu, Y. Chen, R. Shi, L. Cao, Z. Wang, T. Sun, J. Lin, J. Liu, W. Huang, High-yield and rapid synthesis of ultrathin silver nanowires for low-haze transparent conductors. RSC Adv. 7, 4891–4895 (2017)

    Article  CAS  Google Scholar 

  14. S. Zhu, Y. Gao, B. Hu, J. Li, J. Su, Z. Fan, J. Zhou, Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24, 335202 (2013)

    Article  Google Scholar 

  15. S. Chang, K. Chen, Q. Hua, Y. Ma, W. Huang, Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C 115, 7979–7986 (2011)

    Article  CAS  Google Scholar 

  16. J. Ma, M. Zhan, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 4, 21060 (2014)

    Article  CAS  Google Scholar 

  17. W.M. Schuette, W.E. Buhro, Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 7, 3844–3853 (2013)

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 9, 25465–25473 (2017)

    Article  CAS  Google Scholar 

  19. D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, Large-scale synthesis of silver nanowires via a solvothermal method. J. Mater. Sci. Mater. Electron. 22, 6–13 (2010)

    Article  Google Scholar 

  20. L. Zhang, F. Jiang, B. Wu, C. Lv, M. Wu, A one-step synthesis of ultra-long silver nanowires with ultra-high aspect ratio above 2000 and its application in flexible transparent conductive electrodes. Nanotechnology 32, 105710 (2021)

    Article  CAS  Google Scholar 

  21. R. Long, S. Zhou, B.J. Wiley, Y. Xiong, Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem. Soc. Rev. 43, 6288–6310 (2014)

    Article  CAS  Google Scholar 

  22. X. Tang, M. Tsuji, P. Jiang, M. Nishio, S.-M. Jang, S.-H. Yoon, Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids Surf. A 338, 33–39 (2009)

    Article  CAS  Google Scholar 

  23. Y. Rui, W. Zhao, D. Zhu, H. Wang, G. Song, M.T. Swihart, N. Wan, D. Gu, X. Tang, Y. Yang, T. Zhang, Understanding the effects of NaCl, NaBr and their mixtures on silver nanowire nucleation and growth in terms of the distribution of electron traps in silver halide crystals. Nanomaterials 8, 161 (2018)

    Article  Google Scholar 

  24. T. Huang, X.H. Nancy Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem. 20, 9867–9876 (2010)

    Article  CAS  Google Scholar 

  25. K. Zhan, R. Su, S. Bai, Z. Yu, N. Cheng, C. Wang, S. Xu, W. Liu, S. Guo, X.Z. Zhao, One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe(3+) and Cl(−) co-mediated polyol method and their application as transparent conductive films. Nanoscale 8, 18121–18133 (2016)

    Article  CAS  Google Scholar 

  26. Z. Li, Y. Sun, Silver chlorobromide nanoparticles with highly pure phases: synthesis and characterization. J. Mater. Chem. A 1, 6786–6793 (2013)

    Article  CAS  Google Scholar 

  27. M. Zhu, C. Chen, P. Chen, B. Lei, W. Ma, M. Liu, Sunlight-driven Ag–AgCl(1–x)Br(x) photocatalysts: enhanced catalytic performances via continuous bandgap-tuning and morphology selection. Phys. Chem. Chem. Phys. 15, 12709–12716 (2013)

    Article  CAS  Google Scholar 

  28. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)

    Article  CAS  Google Scholar 

  29. C. An, J. Wang, S. Wang, Q. Zhang, M. Yang, J. Zhan, Converting AgCl nanocubes to silver nanowires through a glycerol-mediated solution route. CrystEngComm 14, 5886–5891 (2012)

    Article  CAS  Google Scholar 

  30. C. Wang, B. Cheng, H. Zhang, P. Wan, L. Luo, Y. Kuang, X. Sun, Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Res. 9, 1532–1542 (2016)

    Article  CAS  Google Scholar 

  31. S. Zhou, J. Li, K.D. Gilroy, J. Tao, C. Zhu, X. Yang, X. Sun, Y. Xia, Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 10, 9861–9870 (2016)

    Article  CAS  Google Scholar 

  32. Q. Li, S. Chang, D. Wu, S. Bao, C. Zeng, M. Nasir, B. Tian, J. Zhang, Synthesis of cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts and comparison of their photocatalytic activity for degradation of methyl orange and 2,4-dichlorophenol. Res. Chem. Intermed. 44, 4651–4661 (2018)

    Article  CAS  Google Scholar 

  33. W. Kong, S. Wang, D. Wu, C. Chen, Y. Luo, Y. Pei, B. Tian, J. Zhang, Fabrication of 3D sponge@AgBr–AgCl/Ag and tubular photoreactor for continuous wastewater purification under sunlight irradiation. ACS Sustain. Chem. Eng. 7, 14051–14063 (2019)

    Article  CAS  Google Scholar 

  34. S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y. Xia, On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 8, 2077–2081 (2008)

    Article  CAS  Google Scholar 

  35. Y. Bi, J. Ye, Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem. Eur. J. 16, 10327–10331 (2010)

    Article  CAS  Google Scholar 

  36. J. Jiu, K. Murai, D. Kim, K. Kim, K. Suganuma, Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 114, 333–338 (2009)

    Article  CAS  Google Scholar 

  37. R. Prucek, A. Panáček, A. Fargašová, V. Ranc, V. Mašek, L. Kvítek, R. Zbořil, Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment—a new substrate for surface enhanced IR–visible Raman spectroscopy. CrystEngComm 13, 2242 (2011)

    Article  CAS  Google Scholar 

  38. Z. Niu, F. Cui, E. Kuttner, C. Xie, H. Chen, Y. Sun, A. Dehestani, K. Schierle-Arndt, P. Yang, Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 18, 5329–5334 (2018)

    Article  CAS  Google Scholar 

  39. H. Ding, Y. Zhang, G. Yang, S. Zhang, L. Yu, P. Zhang, Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films. RSC Adv. 6, 8096–8102 (2016)

    Article  CAS  Google Scholar 

  40. A. Taguchi, S. Fujii, T. Ichimura, P. Verma, Y. Inouye, S. Kawata, Oxygen-assisted shape control in polyol synthesis of silver nanocrystals. Chem. Phys. Lett. 462, 92–95 (2008)

    Article  CAS  Google Scholar 

  41. S. Coskun, E.S. Ates, H.E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24, 125202 (2013)

    Article  Google Scholar 

  42. H. Kang, Y. Kim, S. Cheon, G.R. Yi, J.H. Cho, Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 9, 30779–30785 (2017)

    Article  CAS  Google Scholar 

  43. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC Nos. 61704079, 11674053), the Open Project of National Laboratory of Solid-State Microstructures, and the National Undergraduate Training Program for Innovation and Entrepreneurship (202110291129Z) and PAPD.

Author information

Authors and Affiliations

Authors

Contributions

YJ and RT designed and conducted the experiment and wrote the manuscript. HZ and NW carried out the UV–Vis absorption and XRD measurements and data analysis. XPS, SEM, TEM, and electrical measurements and data analysis were done by YY, DG, and TZ. YR and JX supervised the project and reviewed and edited the manuscript. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Yunjun Rui or Jun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 565 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tao, R., Zhang, H. et al. Separating nucleation from growth for high-yield synthesis of thin silver nanowires. J Mater Sci: Mater Electron 34, 26 (2023). https://doi.org/10.1007/s10854-022-09454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09454-5

Navigation