Skip to main content

Advertisement

Log in

Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Currently, synthesis of nanoparticles from several noble metals like palladium, tin, copper, silver and gold etc. has received more attention because of their unique properties as well as their application in different fields. Furthermore, silver nanoparticles play an important role in pharmaceutical industries because they function like antibacterial agents which carry less toxic effects. In case of industrial applications, silver particles (inkjet inks) having regular dispersions are helpful in making different electronic circuits. Over the period, various synthetic methods for the synthesis of silver nanoparticles were reported i.e. physical, chemical, and photochemical. However, most of the available techniques are expensive and not eco-friendly i.e. environmentally harmful. There are various factors such as the methods of synthesis, temperature, dispersing agent, surfactant etc. which greatly influence the quality and quantity of the synthesized nanoparticles and ultimately affect their properties. It is also pertinent to mention here that the main target for these silver nanoparticles was not only to synthesize in nano range, but also require easy, eco-friendly and economical synthesis of the nanoparticles. Therefore, this review mainly goes through the several methods of synthesis of nanoparticles which should be based on the green approach, and easy to be synthesized at low cost. In addition, we also discussed some approaches to fabricate silver-based nanoparticles, their enhanced properties and their different type of applications such as electrical conductivity, antibacterial, optical, photocatalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht M, Janke V, Sievers S, Siegner U, Schüler D, Heyen U (2005) Scanning force microscopy study of biogenic nanoparticles for medical applications. J Magn Magn Mater 290:269–271

    Google Scholar 

  • Anna Z, Ewa S, Adriana Z, Maria G, Jan H (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566

    Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1(1):3. https://doi.org/10.1186/s40643-014-0003-y

    Article  Google Scholar 

  • Boddu SR, Gutti VR, Ghosh TK, Tompson RV, Loyalka SK (2011) Gold, silver, and palladium nanoparticle/nano-agglomerate generation, collection, and characterization. J Nanopart Res 13:6591–6601

    CAS  Google Scholar 

  • Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6:895–901. https://doi.org/10.1007/s13204-015-0496-5

    Article  CAS  Google Scholar 

  • Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    CAS  Google Scholar 

  • Bushra R, Shahadat M, Ahmad A, Nabi SA, Umar K, Oves M, Raeissi AS, Muneer M (2014) Synthesis, characterization, antimicrobial activity and applications of polyaniline Ti(IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J Hazard Mater 264:481–489

    CAS  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    CAS  Google Scholar 

  • Chen X, Schluesener H (2008) Nanosilver: a Nano product in medical application. Toxicol Lett 176:1–12

    CAS  Google Scholar 

  • Chen SF, Zhang H (2012) Aggregation kinetics of nanosilver in different water condition. Adv Nat Sci Nanosci Nanotechnol 3(035006):1–7

    CAS  Google Scholar 

  • Chou KS, Lai YS (2004) Effect of polyvinyl pyrrlidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys 83:82–88

    CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

    CAS  Google Scholar 

  • Dalzon B, Torres A, Diemer H, Ravanel S, Collin-Faure V, Pernet-Gallay K, Jouneau PH, Bourguignon J, Cianférani S, Carrière M, Aude-Garcia C (2019) How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environ Sci Nano 6(10):3133–3157

    CAS  Google Scholar 

  • Dang TMD, Le TTT, Blance EF, Dang MC (2012) Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol 3(035004):1–4

    Google Scholar 

  • Dar AA, Umar K, Mir NA, Haque MM, Muneer M, Boxall C (2011) Photocatalysed degradation of a herbicide derivative, Dinoterb, in aqueous suspension. Res Chem Intermediat 37:567–578

    CAS  Google Scholar 

  • Darr JA, Zhang J, Makwana NM, Weng X (2017) Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical Rev 117(17):11125–11238

    CAS  Google Scholar 

  • Das N, Karar A, Vasiliev M, Tan CL, Alameh K, Lee YT (2011) Analysis of nano-grating-assisted light absorption enhancement in metal–semiconductor–metal photodetectors patterned using focused ion-beam lithography. Opt Commun 284(6):1694–1700

    CAS  Google Scholar 

  • Dolgaev I, Simakin AV, Voronov VV, Shafeev GA, Verduraz FB (2002a) Nanoparticles produced by laser ablation of solids in liquid environments. J Biomedical Optics 186:546–551

    CAS  Google Scholar 

  • Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002b) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186(4):546–551

    CAS  Google Scholar 

  • Duran N, Marcarto PD, Souza GHD, Alves OL, Esposito Ev (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    CAS  Google Scholar 

  • El-Nour KMM, Eftaiha A, Al-Reda A, Ammar AA (2004) Synthesis and applications of silver nanoparticles. Arabian J Chem 3:135–140

    Google Scholar 

  • El-Nour KMMA, Eftaiha AA, Al-Warthan A, Ammar RA (2010a) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140. https://doi.org/10.1016/j.arabjc.2010.04.008

    Article  CAS  Google Scholar 

  • Faisal M, Tariq MA, Khan A, Umar K, Muneer M (2011) Photochemical reactions of 2, 4-dichloroaniline and 4-nitroanisole in aqueous suspension of titanium dioxide. Sci Adv Mater 3:269–275

    CAS  Google Scholar 

  • Ge J, Huynh T, Hu Y, Yin Y (2008) Hierarchical magnetite/silica Nano assemblies as magnetically recoverable catalyst–supports. Nano Lett 3(8):931–934

    Google Scholar 

  • Guimarães ML, da Silva FA, da Costa MM, de Oliveira HP (2019) Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Appl Nanosci. 19:1–9. https://doi.org/10.1007/s13204-019-01181-4

    Article  CAS  Google Scholar 

  • Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193:89–96

    CAS  Google Scholar 

  • Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 3(26):143–215

    Google Scholar 

  • Hecht DS, Ramirez RJ, Briman M, Artukovic E, Chichak KS, Stoddart JF, Grüner G (2006) Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett 6(9):2031–2036

    CAS  Google Scholar 

  • Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8(27):13131–13154

    CAS  Google Scholar 

  • Hsu SLC, Wu RT (2007) Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Mater Lett 61:3719–3722

    CAS  Google Scholar 

  • Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren BZ, Yang Tian YZQ (2004) A simple effective route for the synthesis of crystalline silver nanorodes and nanowires. Adv Funct Mater 14:183–187

    CAS  Google Scholar 

  • Huang H, Yang Y (2008) Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol 68:2948–2953

    CAS  Google Scholar 

  • Iacono ST, Jennings AR (2019) Recent studies on fluorinated silica nanometer-sized particles. Nanomaterials 9(5):684

    CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  Google Scholar 

  • Irshad A, Sarwar N, Sadia H, Riaz M, Sharif S, Shahid M, Khan JA (2019) Silver nano-particles: synthesis and characterization by using glucans extracted from Pleurotus ostreatus. Appl Nanosci. https://doi.org/10.1007/s13204-019-01103-4

    Article  Google Scholar 

  • Ismail M, Jabra R (2017) Investigation the parameters affecting on the synthesis of silver nanoparticles by chemical reduction method and printing a conductive pattern. J Mater Environ Sci 8(11):4152–4159

    CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as antibacterial water filters. Biotechnol Bioeng 90:59–63

    CAS  Google Scholar 

  • Jana ANR, Sau TK, Pal TJ (1999) Growing Small Silver Particles as Redox Catalyst. J Phys Chem B 103:115–121

    CAS  Google Scholar 

  • Junaidi J et al (2016) Chloride ion addition for controlling shapes and properties of silver nanorodes capped by polyvinyl alcohol synthesized using polyol method. Conference Paper 10(1063/1):4945485

    Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    CAS  Google Scholar 

  • Khanna PK, Kulkarni D, Beri RK (2008) Synthesis and characterization of myristic acid capped silver nanoparticles. J Nanopart Res 6:1059–1062

    Google Scholar 

  • Kholoud MM, Nour AE, Eftaiha A, Warthan AA, Ammar RAA (2010b) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Google Scholar 

  • Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size selected PbS nanoparticles. Mater Sci Eng B 69(70):329–334

    Google Scholar 

  • Lahav M, Shipway AN, Willner I, Nielsen MB, Stoddart JF (2000) An enlarged bis-bipyridinium cyclophane-Au nanoparticle superstructure for selective electrochemical sensing applications. J Electroanal Chem 482(2):217–221

    CAS  Google Scholar 

  • Lee HH, Chou KS, Huang KC (2005) Inkjet printing of nanosize silver colloids. Nanotechnology 16:2436–2441

    CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    CAS  Google Scholar 

  • Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloi Interface Sci 288(2):444–448

    CAS  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    CAS  Google Scholar 

  • Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold nanoparticles: Production, reshaping, and Thermal charging. J Nanoparticle Res 1:243–251

    CAS  Google Scholar 

  • Malik A, Hameed S, Siddiqui MJ, Haque MM, Umar K, Khan A, Muneer M (2014) Electrical and optical properties of nickel-and molybdenum-doped titanium dioxide nanoparticle: improved performance in dye-sensitized solar cells. J Mater Eng Perform 23:3184–3192

    CAS  Google Scholar 

  • Manno D, Filippo E, Di Giulio M, Serra A (2008) Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J Non Cryst Solids 354(52–54):5515–5520. https://doi.org/10.1016/j.jnoncrysol.2008.04.059

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    CAS  Google Scholar 

  • Maria BS, Devadiga A, Kodialbail VS, Saidutta MB (2015) Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Applied Nanoscience Appl Nanosci 5:755–762. https://doi.org/10.1007/s13204-014-0372-8

    Article  CAS  Google Scholar 

  • Mir NA, Khan A, Umar K, Muneer M (2013) Photocatalytic study of a xanthene dye derivative, phloxine B in aqueous suspension of TiO2: adsorption isotherm and decolourization kinetics. Environ Focus 2:208–216

    Google Scholar 

  • Nair GB, Dhoble SJ (2015) Highly enterprising calcium zirconium phosphate [Ca Zr4 (PO4)6: Dy3+, Ce3+] phosphor for white light emission. RSC Adv 5(61):49235–49247

    CAS  Google Scholar 

  • Natsuki J, Abe T (2016) Synthesis of pure colloidal silver nanoparticles with high electro conductivity for printed electronic circuits: The effect of amines on their formation in aqueous media. J Colloid Interf Sci 359:19–23

    Google Scholar 

  • Natsuki J, Natsuki T, Abe T (2013) Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles. J Nano part Res 15:1483–1489

    Google Scholar 

  • Natsuki J, Natsuki T, Hashimoto Y (2015) A Review of Silver Nanoparticles: Synthesis Methods Properties and Applications. IJ MSA 20150405(17):2327–2635

    Google Scholar 

  • Nazme M, Kamal A, Rajendran V, Yong TL (2013) Silver-nanoparticle-based etch mask control for subwavelength structure development. Nanosyst Phys Chem Math 4(3):387–394

    Google Scholar 

  • Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221):522–525

    CAS  Google Scholar 

  • Olteanu RL, Nicolescu CM, Bumbac M (2017) Influence of phytochemical reductive capacity on ultraviolet–visible spectroscopic behavior of silver nanoparticles. Anal. Lett. 50(17):2786–2801

    CAS  Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14:76–91. https://doi.org/10.1515/chem-2016-0005

    Article  CAS  Google Scholar 

  • Patil RS, Kokate MR, Jambhale C, Pawar SM, Han SH, Kolekar SS (2012) One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Adv Nat Sci-Nanosci Nanotechnol 3(015013):1–7

    CAS  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi Hyun JJW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    CAS  Google Scholar 

  • Premaratne K, Kumara GR, Rajapakse RM, Karunarathne ML (2012) Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with Indoline D-358 as the dye. J Photoch Photobio A 229(1):29–32

    CAS  Google Scholar 

  • Radziuk D, Skirtach A, Sukhrukov G, Shchukin D (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly (ethylene glycol). Macromol Rapid Commune 28:848–855

    CAS  Google Scholar 

  • Radzuan NA, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrog Energy 42(14):9262–9273

    Google Scholar 

  • Rai M, Yadav GA (2008) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Google Scholar 

  • Reddy AB, Jaafar J, Majid ZA, Aris A, Umar K, Talib J, Madhavi G (2015) Relative efficiency comparison of carboxymethyl cellulose (cmc) stabilized fe0 and fe0/ag nanoparticles for rapid degradation of chlorpyrifos in aqueous solutions. Dig J Nanomater Bios 10:331–340

    Google Scholar 

  • Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2016) Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment. Sci reports 30:32185

    Google Scholar 

  • Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4:881–888. https://doi.org/10.1007/s13204-013-0271-4

    Article  CAS  Google Scholar 

  • Shin TY, Yoo SH, Park S (2008) Gold nanotubes with a nanoporous wall: their ultrathin platinum coating and superior electro catalytic activity toward methanol oxidation. Chem Mat 20(17):5682–5686

    CAS  Google Scholar 

  • Singh R, Singh RK (2017) A Review on Nano Materials of Carbon. J App Phy 9(6):2278–4861

    Google Scholar 

  • Singhal A, Singhal N, Bhattacharya A (2007) Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extracts for potential application as antibacterial and dye decolourising agent. Inorganic Nano-Met Chem 135:7604–7609. https://doi.org/10.1080/24701556

    Article  Google Scholar 

  • Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526

    CAS  Google Scholar 

  • Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of monodispered silver nanoparticles. J Colloid Interface Sci 260:75–81

    CAS  Google Scholar 

  • Sultana S, Khan MZ, Umar K, Ahmed AS, Shahadat M (2015) SnO2–SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants. J Mol Struct 1098:393–399

    CAS  Google Scholar 

  • Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177

    CAS  Google Scholar 

  • Toisawa K, Hayashi Y, Takizawa H (2010) Synthesis of highly concentrated a nanoparticles in a heterogeneous solid-liquid system under ultrasonic irradiation. Mater Trans 51:1764–1768

    CAS  Google Scholar 

  • Torchinsky I, Molotskii M, Rosenman G (2010) Induced superhydrophobicity in ZnO nanomaterial. J Nanopart Res 12:2427–2433

    CAS  Google Scholar 

  • Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:1–19

    CAS  Google Scholar 

  • Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Appl Surf Sci 202:80–85

    CAS  Google Scholar 

  • Umar K, Aris A, Ahmad H, Parveen T, Jaafar J, Majid ZA, Reddy AV, Talib J (2016) Synthesis of visible light active doped TiO2 for the degradation of organic pollutants—methylene blue and glyphosate. J Anal Sci Technol 7:29–36

    Google Scholar 

  • Umar K, Aris A, Parveen T, Jaafar J, Majid ZA, Reddy AV, Talib J (2015) Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes. Appl Catal A 505:507–514

    CAS  Google Scholar 

  • Umar K, Dar AA, Haque MM, Mir NA, Muneer M (2012) Photocatalysed decolorization of two textile dye derivatives, Martius Yellow and Acid Blue 129, in UV-irradiated aqueous suspensions of Titania. Desal Water Treat 46:205–214

    CAS  Google Scholar 

  • Umar K, Haque MM, Mir NA, Muneer M, Farooqi IH (2013) Titanium dioxide-mediated photocatalysed mineralization of two selected organic pollutants in aqueous suspensions. J Adv Oxid Technol 16:252–260

    CAS  Google Scholar 

  • Umar K, Parveen T, Khan MA, Ibrahim MNM, Ahmad A, Rafatullah M (2019) Degradation of organic pollutants using metal-doped TiO2 photocatalysts under visible light: a comparative study. Desal Water Treat 161:275–282

    CAS  Google Scholar 

  • Vazquez-Rodriguez A, Vasto-Anzaldo XG, Perez DB, Vázquez-Garza E, Chapoy-Villanueva H, García-Rivas G, Garza-Cervantes JA, Gómez-Lugo JJ, Gomez-Loredo AE, Gonzalez MT, Zarate X (2018) Microbial Competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of Non-Toxic Exopolysaccharide with Applications as a Wide-Spectrum Antimicrobial. Sci Rep 8(1):1–4

    CAS  Google Scholar 

  • Velmurugan P, Cho M, Lim SS, Seo SK, Myung H, Bang KS, Sivakumar S, Cho KM, Oh BT (2015) Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater Lett 138:272–275

    CAS  Google Scholar 

  • Vilchis Nestor AR, Nchez Mendieta V, Camacho López MA, Gómez-Espinosa RM, Arenas Alatorre JA (2008) Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62:3103–3105

    CAS  Google Scholar 

  • Wakuda D, Kim KS, Suganuma K (2008) Room temperature sintering of Ag nanoparticles by drying solvent. Scrip Matervol 59:649–652

    CAS  Google Scholar 

  • Xian Y, Gao F, Cai B (2013) Synthesis of platinum nanoparticle chains based α-chymotrpsin fibrils. Mat Lett 111:39–42

    CAS  Google Scholar 

  • Xu K, Chen Y, Okhai TA, Snyman LW (2019) Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt Mater Express 9(10):3985–3997

    CAS  Google Scholar 

  • Xu K (2019) Silicon MOS optoelectronic micro-nano structure based on reverse-biased PN junction. Phys Status Solidi 216(7):1800868–1800877

    Google Scholar 

  • Yaqoob AA, Khan RM, Saddique A (2019) Review article on applications and classification of gold nanoparticles. Int J Res 6(3):762–770

    Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Ibrahim M, Nasir M (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495

    Google Scholar 

  • Yeo SY, Lee HJ, Jeong SH (2013) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater 38:2143–2147

    Google Scholar 

  • Yuan X, Sun C, Li X, Malola S, Teo BK, Häkkinen H, Zheng LS, Zheng N (2019) Combinatorial identification of hydrides in a ligated Ag40 nanocluster with noncompact metal core. J Am Chem Soc 141(30):11905–11911

    CAS  Google Scholar 

Download references

Acknowledgements

This research article was supported financially by Universiti Sains Malaysia, 11800 Penang Malaysia under the Research University Grant; 1001/ PKIMIA/8011070). The author (Khalid Umar) gratefully acknowledged the post-doctoral financial support (USM/PPSK/FPD(BW)2/(2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Umar or Mohamad Nasir Mohamad Ibrahim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqoob, A.A., Umar, K. & Ibrahim, M.N.M. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10, 1369–1378 (2020). https://doi.org/10.1007/s13204-020-01318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01318-w

Keywords

Navigation