Skip to main content
Log in

Probing the seeded protocol for high-concentration preparation of silver nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mass production of high-quality silver nanowires (Ag NWs) is of significant importance because of its potential applications in flexible transparent conductive devices. Halogen ions have been widely used for the synthesis of Ag NWs; however, owing to the lack of a deep insight into heterogeneous nucleation processes, usually a trace feeding amount (e.g. [Cl] < 0.25 mM) is used, which in turn lowers the concentration of precursor ([Ag+]). Here we systematically investigated the nucleation and growth behavior of Ag NWs and concluded that the number of heterogeneous nucleation sites was determined by the total surface area of AgCl seeds, which indicated a linear relationship between the concentrations of Ag+ and Cl during precipitation. Based on this mechanism, we successfully produced high-quality Ag NWs with Ag+ concentrations which were 20 times higher for a polyol system and 5 times higher for an aqueous system as compared to that in the previously reported strategies. Besides, by tailoring the heterogeneous nucleation sites by controlling the size of the AgCl seeds, the diameters of the final Ag NWs could be well controlled even at high Ag+ concentration. Based on the mechanistic understandings, this synthetic strategy could be extended to other AgX-seeds (X = Br, I and SO 2–4 ) and the basic principles can be applied to help rational synthesis of other high-yield metal NWs with tunable sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745.

    Article  Google Scholar 

  2. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  Google Scholar 

  3. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  4. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  Google Scholar 

  5. Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

    Article  Google Scholar 

  6. Zhu, R.; Chung, C. H.; Cha, K. C.; Yang, W. B.; Zheng, Y. B.; Zhou, H. P.; Song, T. B.; Chen, C. C.; Weiss, P. S.; Li, G. et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877–9882.

    Article  Google Scholar 

  7. Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

    Article  Google Scholar 

  8. Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

    Article  Google Scholar 

  9. Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817–824.

    Article  Google Scholar 

  10. Wu, H.; Kong, D. S.; Ruan, Z. C.; Hsu, P. C.; Wang, S.; Yu, Z. F.; Carney, T. J.; Hu, L. B.; Fan, S. H.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421–425.

    Google Scholar 

  11. Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.

    Article  Google Scholar 

  12. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surfaceenhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.

    Article  Google Scholar 

  13. Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

    Article  Google Scholar 

  14. Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955–960.

    Article  Google Scholar 

  15. Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733–1739.

    Article  Google Scholar 

  16. Sun, X. M.; Li, Y. D. Cylindrical silver nanowires: Preparation, structure, and optical properties. Adv. Mater. 2005, 17, 2626–2630.

    Article  Google Scholar 

  17. Sun, Y. G.; Ren, Y.; Liu, Y. Z.; Wen, J. G.; Okasinski, J. S.; Miller, D. J. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 2012, 3, 971.

    Article  Google Scholar 

  18. Luo, M.; Huang, H. W.; Choi, S. I.; Zhang, C.; da Silva, R. R.; Peng, H. C.; Li, Z. Y.; Liu, J. Y.; He, Z. K.; Xia, Y. N. Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS Nano 2015, 9, 10523–10532.

    Article  Google Scholar 

  19. Korte, K. E.; Skrabalak, S. E.; Xia, Y. N. Rapid synthesis of silver nanowires through a CuCl–or CuCl2–mediated polyol process. J. Mater. Chem. 2008, 18, 437–441.

    Article  Google Scholar 

  20. Gou, L. F.; Chipara, M.; Zaleski, J. M. Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 2007, 19, 1755–1760.

    Article  Google Scholar 

  21. Ran, Y. X.; He, W. W.; Wang, K.; Ji, S. L.; Ye, C. H. A onestep route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Mater. 2014, 50, 14877–14880.

    Google Scholar 

  22. Hu, L. B.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  23. Schuette, W. M.; Buhro, W. E. Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 2013, 7, 3844–3853.

    Article  Google Scholar 

  24. Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater. 2001, 13, 656–658.

    Article  Google Scholar 

  25. Wang, Z. H.; Liu, J. W.; Chen, X. Y.; Wan, J. X.; Qian, Y. T. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem.—Eur. J. 2005, 11, 160–163.

    Google Scholar 

  26. Tetsumoto, T.; Gotoh, Y.; Ishiwatari, T. Mechanistic studies on the formation of silver nanowires by a hydrothermal method. J. Colloid Interface Sci. 2011, 362, 267–273.

    Article  Google Scholar 

  27. Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. N. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. 2005, 117, 2192–2195.

    Article  Google Scholar 

  28. Zhu, J. J.; Kan, C. X.; Wan, J. G.; Han, M.; Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater. 2011, 2011, Article ID982547.

    Google Scholar 

  29. Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y. J.; Li, Z. Y.; Ginger, D.; Xia, Y. N. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032–1036.

    Article  Google Scholar 

  30. Tang, Y. X.; Jiang, Z. L.; Xing, G. C.; Li, A. R.; Kanhere, P. D.; Zhang, Y. Y.; Sum, T. C.; Li, S. Z.; Chen, X. D.; Dong, Z. L. et al. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv. Funct. Mater. 2013, 23, 2932–2940.

    Article  Google Scholar 

  31. Lou, Z. Z.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Cheng, H. F.; Liu, Y. Y.; Wang, S. Y.; Wang, J. P.; Dai, Y. Onestep synthesis of AgCl concave cubes by preferential overgrowth along <111> and <110> directions. Chem. Commun. 2012, 48, 3488–3490.

    Article  Google Scholar 

  32. Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  Google Scholar 

  33. Lee, J. H.; Lee, P.; Lee, D.; Lee, S. S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 12, 5598–5605.

    Article  Google Scholar 

  34. Yang, Z. Q.; Qian, H. J.; Chen, H. Y.; Anker, J. N. One-pot hydrothermal synthesis of silver nanowires via citrate reduction. J. Colloid Interface Sci. 2010, 352, 285–291.

    Article  Google Scholar 

  35. Xu, J.; Hu, J.; Peng, C. J.; Liu, H. L.; Hu, Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci. 2006, 298, 689–693.

    Article  Google Scholar 

  36. Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–12535.

    Article  Google Scholar 

  37. Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.

    Article  Google Scholar 

  38. Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722–6726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Luo or Yun Kuang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cheng, B., Zhang, H. et al. Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Res. 9, 1532–1542 (2016). https://doi.org/10.1007/s12274-016-1049-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1049-2

Keywords

Navigation