Skip to main content

Advertisement

Log in

A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As nanotechnology floods application areas like medicine, electronics, water remediation, space and textiles, just to name a few, some nanomaterials remain in the spotlight due to their fantastic properties and their incredible potential. Such is the case of the 2D, transparent, flexible, strong, carbon-based nanomaterial called graphene. Graphene consists of sp2 hybridized carbon arranged in a flat network packed in a honey-comb pattern, having thus mono-atomic thickness. Its isolation in 2004 opened the door to numerous investigations and its research is funded each year by governments, industries and academia worldwide. Due to its non-hydrophilic nature, some applications represent a challenge (particularly biological and medical applications), thus an oxygen/hydrogen-functionalized hydrophilic version of it has lately gained popularity, its name is graphene oxide. This document aims to review the synthesis methods of graphene, graphene oxide and reduced graphene oxide. A revision of the most important top-down and bottom-up methods is presented, focusing on chemical vapor deposition for the growth of graphene and the wet-chemical methods for the synthesis of graphene oxide and the reduction techniques available for reduced graphene oxide. We conclude by analyzing the current situation of graphene and graphene oxide production and the challenges that need to be tackled in order to meet the short-term demand of these nanomaterials for the promised applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(Source: xyz coordinates of the structures CSIRO Data Access Portal)

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  2. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. NInt Nano Lett 6:65–83. https://doi.org/10.1007/s40089-015-0176-1

    Article  CAS  Google Scholar 

  3. Huang PY et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392. https://doi.org/10.1038/nature09718

    Article  CAS  Google Scholar 

  4. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  5. Ferralis N (2010) Probing mechanical properties of graphene with Raman spectroscopy. J Mater Sci 45:5135–5149. https://doi.org/10.1007/s10853-010-4673-3

    Article  CAS  Google Scholar 

  6. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem 3:11700–11715. https://doi.org/10.1039/C5TA00252D

    Article  CAS  Google Scholar 

  7. Lee HC, Liu W-W, Chai S-P, Mohamed AR, Aziz A, Khe C-S, Hidayaha NMS, Hashima U (2017) Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 7:15644–15693. https://doi.org/10.1039/C7RA00392G

    Article  CAS  Google Scholar 

  8. Wu Y, Wang S, Komvopoulos K (2020) A review of graphene synthesis by indirect and direct deposition methods. J Mater Res 35:76–89. https://doi.org/10.1557/jmr.2019.377

    Article  CAS  Google Scholar 

  9. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  10. Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 9:207–229. https://doi.org/10.4236/ojcm.2019.92012

    Article  CAS  Google Scholar 

  11. Agarwal V, Zetterlund PB (2021) Strategies for reduction of graphene oxide—a comprehensive review. Chem Eng J 405:127018. https://doi.org/10.1016/j.cej.2020.127018

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim A, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  13. Gumfekar SP (2018) Graphene-based materials for clean energy applications. In: Bhanvase BA, Pawade VB, Dhoble SJ, Sonawane SH, Ashokkumar M (eds) Nanomaterials for Green Energy. Elsevier, Amsterdam, pp 351–383. https://doi.org/10.1016/B978-0-12-813731-4.00011-4

    Chapter  Google Scholar 

  14. Pirzado AA, Le Normand F, Romero T, Paszkiewicz S, Papaefthimiou V, Ihiawakrim D, Janowska I (2019) Few-layer graphene from mechanical exfoliation of graphite-based materials: structure-dependent characteristics. Chem Eng 3:37. https://doi.org/10.3390/chemengineering3020037

    Article  CAS  Google Scholar 

  15. Huang Y, Sutter E, Shi NN, Zheng J, Yang T, Englund D, Gao HJ, Sutter P (2015) Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9:10612–10620. https://doi.org/10.1021/acsnano.5b04258

    Article  CAS  Google Scholar 

  16. Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  17. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5:1841–1845. https://doi.org/10.1002/smll.200900242

    Article  CAS  Google Scholar 

  18. Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819. https://doi.org/10.1039/c0jm01354d

    Article  CAS  Google Scholar 

  19. Lv Y, Yu L, Jiang C, Chenb S, Nie Z (2014) Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv 4:13350–13354. https://doi.org/10.1039/c3ra45060k

    Article  CAS  Google Scholar 

  20. Lin T, Tang Y, Wang Y, Bi H, Liu Z, Huang F, Xiec X, Jiang M (2013) Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteries. Energy Environ Sci 6:1283–1290. https://doi.org/10.1039/c3ee24324a

    Article  CAS  Google Scholar 

  21. Carozo V, Almeida CM, Ferreira EHM, Cançado LG, Achete CA, Jorio A (2011) Raman signature of graphene superlattices. Nano Lett 11:4527–4534. https://doi.org/10.1021/nl201370m

    Article  CAS  Google Scholar 

  22. Wang J, Mu X, Wang L, Sun M (2019) Properties and applications of new superlattice: twisted bilayer graphene. Mater Today Phys. https://doi.org/10.1016/j.mtphys.2019.100099

    Article  Google Scholar 

  23. Raji M, Zari N, Bouhfid R (2019) Chemical preparation and functionalization techniques of graphene and graphene oxide. In: Raji M, Zari N, El Kacem Qaiss A, Bouhfid R (eds) Functionalized graphene nanocomposites and their derivatives. Elsevier, Amsterdam, pp 1–20. https://doi.org/10.1016/B978-0-12-814548-7.00001-5

    Chapter  Google Scholar 

  24. Seekaew Y, Arayawut O, Timsorn K, Wongchoosuk C (2019) Synthesis, characterization, and applications of graphene and derivatives. In: Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (eds) Carbon-based nanofillers and their rubber Nanocomposites. Amsterdam, Elsevier, pp 259–283. https://doi.org/10.1016/B978-0-12-813248-7.00009-2

    Chapter  Google Scholar 

  25. Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361. https://doi.org/10.1126/science.1078842

    Article  CAS  Google Scholar 

  26. Parvez K, Yang S, Feng X, Müllen K (2015) Exfoliation of graphene via wet chemical routes. Synth Met 210:123–132. https://doi.org/10.1016/j.synthmet.2015.07.014

    Article  CAS  Google Scholar 

  27. Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V (2013) The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv Funct Mater 23:4684–4693. https://doi.org/10.1002/adfm.201203686

    Article  CAS  Google Scholar 

  28. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525. https://doi.org/10.1002/adfm.200700797

    Article  CAS  Google Scholar 

  29. Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Cond Matt 20:323202. https://doi.org/10.1088/0953-8984/20/32/323202

    Article  CAS  Google Scholar 

  30. De Heer WA et al (2007) Epitaxial graphene. Solid State Commun 143:92–100. https://doi.org/10.1016/j.ssc.2007.04.023

    Article  CAS  Google Scholar 

  31. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, De Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916. https://doi.org/10.1021/jp040650f

    Article  CAS  Google Scholar 

  32. Rollings E, Gweon GH, Zhou SY, Mun BS, McChesney JL, Hussain BS, Fedorov AV, First PN, De Heer WA, Lanzara A (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67:2172–2177. https://doi.org/10.1016/j.jpcs.2006.05.010

    Article  CAS  Google Scholar 

  33. Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. https://doi.org/10.1126/science.1125925

    Article  CAS  Google Scholar 

  34. Wu X, Li X, Song Z, Berger C, De Heer WA (2007) Weak antilocalization in epitaxial graphene: evidence for chiral electrons. Phys. Rev. Lett. 98:136801-1–136801-4. https://doi.org/10.1103/PhysRevLett.98.136801

    Article  CAS  Google Scholar 

  35. Virojanadara C, Yakimova R, Zakharov AA, Johansson LI (2010) Large homogeneous mono-/bi-layer graphene on 6H–SiC (0 0 0 1) and buffer layer elimination. J Phys D Appl Phys 43:374010. https://doi.org/10.1088/0022-3727/43/37/374010

    Article  CAS  Google Scholar 

  36. Emtsev KV et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207. https://doi.org/10.1038/nmat2382

    Article  CAS  Google Scholar 

  37. De Heer WA, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J, Conrad E (2011) Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. PNAS 108:16900–16905. https://doi.org/10.1073/pnas.1105113108

    Article  Google Scholar 

  38. Tromp RM, Hannon JB (2009) Thermodynamics and kinetics of graphene growth on SiC (0001). Phys Rev Lett 102:106104. https://doi.org/10.1103/PhysRevLett.102.106104

    Article  CAS  Google Scholar 

  39. Miao C (2011) CVD Synthesis of Graphene and Graphene Bipolar Junction Transistor. Thesis, University of California, Los Angeles. https://www.proquest.com/openview/44049b07d87df250e66566241845e4da/1?pq-origsite=gscholar&cbl=18750 (Accessed 2021-11-15).

  40. Chen Q, Zhou M, Zhang Z, Tang T, Wang T (2017) Preparation of TiO2 nanotubes/reduced graphene oxide binary nanocomposites enhanced photocatalytic properties. J Mater Sci Mater Electron 28:9416–9422. https://doi.org/10.1007/s10854-017-6683-2

    Article  CAS  Google Scholar 

  41. Ma LP, Ren W, Cheng HM (2019) Transfer methods of graphene from metal substrates: a review. Small Methods 3(7):1900049. https://doi.org/10.1002/smtd.201900049

    Article  CAS  Google Scholar 

  42. Xu S, Zhang L, Wang B, Ruoff RS (2021) Chemical vapor deposition of graphene on thin-metal films. Cell Rep 2:100372-1–100372-35. https://doi.org/10.1016/j.xcrp.2021.100372

    Article  CAS  Google Scholar 

  43. Martin PM (2009). In: Martin PM (ed) Handbook of deposition technologies for films and coatings: science, applications and technology. Elsevier, Amsterdam

    Google Scholar 

  44. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59. https://doi.org/10.1016/j.cplett.2006.06.081

    Article  CAS  Google Scholar 

  45. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93:113103. https://doi.org/10.1063/1.2982585

    Article  CAS  Google Scholar 

  46. De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. TNANO 8:135–138. https://doi.org/10.1109/TNANO.2009.2013620

    Article  Google Scholar 

  47. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v

    Article  CAS  Google Scholar 

  48. Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  49. Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  50. Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272. https://doi.org/10.1021/nl902515k

    Article  CAS  Google Scholar 

  51. Kang BJ, Mun JH, Hwang CY, Cho BJ (2009) Monolayer graphene growth on sputtered thin film platinum. J Appl Phys 106:104309-1–104309-6. https://doi.org/10.1063/1.3254193

    Article  CAS  Google Scholar 

  52. Coraux J, Plasa TN, Busse C, Michely T (2008) Structure of epitaxial graphene on Ir (111). New J Phys 10:043033-1–043033-16. https://doi.org/10.1021/nl0728874

    Article  CAS  Google Scholar 

  53. Varykhalov A, Rader O (2009) Graphene grown on Co (0001) films and islands: Electronic structure and its precise magnetization dependence. Phys Rev B 80:035437-1–035437-6. https://doi.org/10.1103/PhysRevB.80.035437

    Article  CAS  Google Scholar 

  54. Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareno J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett. 9:3985–3990. https://doi.org/10.1021/nl902140j

    Article  CAS  Google Scholar 

  55. Nandamuri G, Roumimov S, Solanki R (2010) Chemical vapor deposition of graphene films. Nanotechnology 21:145604. https://doi.org/10.1088/0957-4484/21/14/145604

    Article  CAS  Google Scholar 

  56. Kim J, Seo, J, Jung HK, Kim SH, Lee HW (2012) The effect of various parameters for few-layered graphene synthesis using methane and acetylene. J Ceram Process Res 13:S42–S46. https://doi.org/10.36410/jcpr.2012.13.42

  57. Qi M, Ren Z, Jiao Y, Zhou Y, Xu X, Li W, Zheng X, Bai J (2013) Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J Phys Chem C 117:14348–14353. https://doi.org/10.1021/jp403410b

    Article  CAS  Google Scholar 

  58. Mueller NS, Morfa AJ, Abou-Ras D, Oddone V, Ciuk T, Giersig M (2014) Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition. Carbon 78:347–355. https://doi.org/10.1016/j.carbon.2014.07.011

    Article  CAS  Google Scholar 

  59. Yang M, Sasaki S, Ohnishi M, Suzuki K, Miura H (2016) Electronic properties and strain sensitivity of CVD-grown graphene with acetylene. Jpn J Appl Phys 55:04EP05. https://doi.org/10.7567/JJAP.55.04EP05

    Article  CAS  Google Scholar 

  60. Stadermann M et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744. https://doi.org/10.1021/nl803277g

    Article  CAS  Google Scholar 

  61. De Parga AV, Calleja F, Borca BMCG, Passeggi MCG Jr, Hinarejos JJ, Guinea F, Miranda R (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807–056807-4. https://doi.org/10.1103/PhysRevLett.100.056807

    Article  CAS  Google Scholar 

  62. Celebi K, Cole MT, Teo KB, Park HG (2011) Observations of early stage graphene growth on copper. Electrochem Solid-State Lett 15:K1–K4. https://doi.org/10.1149/2.005201esl

    Article  CAS  Google Scholar 

  63. Addou R, Dahal A, Sutter P, Batzill M (2012) Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition. Appl Phys Lett 100:021601. https://doi.org/10.1063/1.3675481

    Article  CAS  Google Scholar 

  64. Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li C, Yang J, Hou J (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390. https://doi.org/10.1021/nn200854p

    Article  CAS  Google Scholar 

  65. Campos-Delgado J, Botello-Méndez AR, Algara-Siller G, Hackens B, Pardoen T, Kaiser U, Dresselhaus MS, Charlier JC, Raskin JP (2013) CVD synthesis of mono-and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure. Chem. Phys. Lett 584:142–146. https://doi.org/10.1016/j.cplett.2013.08.031

    Article  CAS  Google Scholar 

  66. Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M, Shinohara H (2010) A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl Phys Lett 96:263105–263105-3. https://doi.org/10.1063/1.3458797

    Article  CAS  Google Scholar 

  67. Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly KF, Ajayan PM (2010) Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem Mater 22:3457–3461. https://doi.org/10.1021/cm101027c

    Article  CAS  Google Scholar 

  68. Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210. https://doi.org/10.1016/j.carbon.2011.05.054

    Article  CAS  Google Scholar 

  69. Gadipelli S, Calizo I, Ford J, Cheng G, Walker ARH, Yildirim T (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mat Chem 21:16057–16065. https://doi.org/10.1039/C1JM12938D

    Article  CAS  Google Scholar 

  70. Maarof S, Ali AA, Hashim AM (2019) Synthesis of large-area single-layer graphene using refined cooking palm oil on copper substrate by spray injector-assisted CVD. Nanoscale Res Lett 14:1–8. https://doi.org/10.1186/s11671-019-2976-0

    Article  CAS  Google Scholar 

  71. Li Z, Gordon RG, Pallem V, Li H, Shenai DV (2010) Direct-liquid-injection chemical vapor deposition of nickel nitride films and their reduction to nickel films. Chem Mater 22:3060–3066. https://doi.org/10.1021/cm903636j

    Article  CAS  Google Scholar 

  72. Intaro T et al (2020) Characterization of graphene grown by direct-liquid-injection chemical vapor deposition with cyclohexane precursor in N2 ambient. Diam Relat Mat 104:107717. https://doi.org/10.1016/j.diamond.2020.107717

    Article  CAS  Google Scholar 

  73. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549–552. https://doi.org/10.1038/nature09579

    Article  CAS  Google Scholar 

  74. Ahmed M, Kishi N, Sugita R, Fukaya A, Khatri I, Liang J, Mominuzzaman SM, Soga T, Jimbo T (2013) Graphene synthesis by thermal chemical vapor deposition using solid precursor. J Mater Sci Mater Electron 24:2151–2155. https://doi.org/10.1007/s10854-013-1073-x

    Article  CAS  Google Scholar 

  75. Kondrashov II, Rybinm MG, Obraztsova EA, Obraztsova ED (2019) Controlled graphene synthesis from solid carbon sources. Phys Status Solidi B 256:1800688. https://doi.org/10.1002/pssb.201800688

    Article  CAS  Google Scholar 

  76. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607. https://doi.org/10.1021/nn202625c

    Article  CAS  Google Scholar 

  77. Sharma S, Kalita G, Hirano R, Shinde SM, Papon R, Ohtani H, Tanemura M (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73. https://doi.org/10.1016/j.carbon.2014.01.051

    Article  CAS  Google Scholar 

  78. Weatherup RS, Bayer BC, Blume R, Ducati C, Baehtz C, Schlögl R, Hofmann S (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160. https://doi.org/10.1021/nl202036y

    Article  CAS  Google Scholar 

  79. Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nanolett 11:3519–3525. https://doi.org/10.1021/nl201699j

    Article  CAS  Google Scholar 

  80. Huang M et al (2018) Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil. ACS Nano 12:6117–6127. https://doi.org/10.1021/acsnano.8b02444

    Article  CAS  Google Scholar 

  81. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819. https://doi.org/10.1021/ja109793s

    Article  CAS  Google Scholar 

  82. Luo B et al (2017) Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene. 2D Mater 4:5017. https://doi.org/10.1088/2053-1583/aa85d5

    Article  CAS  Google Scholar 

  83. Hao Y et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723. https://doi.org/10.1126/science.1243879

    Article  CAS  Google Scholar 

  84. Liang T, Luan C, Chen H, Xu M (2017) Exploring oxygen in graphene chemical vapor deposition synthesis. Nanoscale 9:3719–3735. https://doi.org/10.1039/C7NR00188F

    Article  CAS  Google Scholar 

  85. Cao QJ, Shi BY, Dou WD, Tang JX, Mao HY (2018) Background pressure does matter for the growth of graphene single crystal on copper foil: Key roles of oxygen partial pressure. Carbon 138:458–464. https://doi.org/10.1016/j.carbon.2018.07.072

    Article  CAS  Google Scholar 

  86. Hesjedal T (2011) Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl Phys Lett 98:133106–133106-3. https://doi.org/10.1063/1.3573866

    Article  CAS  Google Scholar 

  87. Kobayashi T et al (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102:023112. https://doi.org/10.1063/1.4776707

    Article  CAS  Google Scholar 

  88. Polsen ES, McNerny DQ, Viswanath B, Pattinson SW, Hart AJ (2015) High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep 5:1–12. https://doi.org/10.1038/srep10257

    Article  Google Scholar 

  89. Jalili M, Ghanbari H, Bellah SM, Malekfa R (2019) High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation. J Mater Res Technol 35:292–299. https://doi.org/10.1016/j.jmst.2018.09.048

    Article  CAS  Google Scholar 

  90. Ye R, James DK, Tour JM (2019) Laser-induced graphene: from discovery to translation. Adv Mater 31:1803621. https://doi.org/10.1002/adma.201803621

    Article  CAS  Google Scholar 

  91. Stanford MG, Zhang C, Fowlkes JD, Hoffman A, Ivanov IN, Rack PD, Tour JM (2020) High-resolution laser-induced graphene flexible electronics beyond the visible limit. ACS Appl Mater Interfaces 12:10902–10907. https://doi.org/10.1021/acsami.0c01377

    Article  CAS  Google Scholar 

  92. Beckham JL, Li JT, Stanford MG, Chen W, McHugh EA, Advincula PA, Wyss KM, Chyan Y, Boldman WL, Rack PD, Tour JM (2021) High-Resolution laser-induced graphene from photoresist. ACS Nano 15:8976–8983. https://doi.org/10.1021/acsnano.1c01843

    Article  CAS  Google Scholar 

  93. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714

    Article  CAS  Google Scholar 

  94. Ye R, James DK, Tour JM (2018) Laser-induced graphene. Acc Chem Res 51:1609–1620. https://doi.org/10.1021/acs.accounts.8b00084

    Article  CAS  Google Scholar 

  95. Wang L, Wang Z, Bakhtiyari AN, Zheng H (2020) A comparative study of laser-induced graphene by CO2 infrared laser and 355 nm ultraviolet (UV) laser. Micromachines 11:1094. https://doi.org/10.3390/mi11121094

    Article  Google Scholar 

  96. Kulyk B, Silva BFR, Carvalho AF, Silvestre S, Fernandes AJS, Martins R, Fortunato E, Costa FM (2021) Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interfaces 13:10210–10221. https://doi.org/10.1021/acsami.0c20270

    Article  CAS  Google Scholar 

  97. Qian M, Zhou YS, Gao Y, Park JB, Feng T, Huang SM, Sun Z, Jiang L, Lu YF (2011) Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl Phys. Lett. 98:173. https://doi.org/10.1063/1.3584021

    Article  CAS  Google Scholar 

  98. Kiran GR, Chandu B, Acharyya SW, Rao VS, Srikanth VVSS (2017) One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions. Philos Mag Lett 97:229–234. https://doi.org/10.1080/09500839.2017.1320437

    Article  CAS  Google Scholar 

  99. Hameed R, Khashanb KS, Sulaiman GM (2020) Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Mater Today Proc 20:535–539. https://doi.org/10.1016/j.matpr.2019.09.185

    Article  CAS  Google Scholar 

  100. Russo P, Hu A, Compagnini G, Duley WW, Zhoua NY (2014) Femtosecond laser ablation of highly orientedpyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 6:2381–2389. https://doi.org/10.1039/C3NR05572H

    Article  CAS  Google Scholar 

  101. Sadeghi H, Solati E, Dorranian D (2019) Producing graphene nanosheets by pulsed laser ablation: effects of liquid environment. Laser Appl 31:042003. https://doi.org/10.2351/1.5109424

    Article  CAS  Google Scholar 

  102. Huang Y, Sepioni M, Whitehead D, Liu Z, Guo W, Zhong X, Gu H, Li L (2020) Rapid growth of large area graphene onglass from olive oil by laser irradiation. Nanotechnology 31:245601. https://doi.org/10.1088/1361-6528/ab7ef6

    Article  CAS  Google Scholar 

  103. Luong DX et al (2020) Gram-scale bottom-up flash graphene synthesis. Nature 577:647–651. https://doi.org/10.1038/s41586-020-1938-0

    Article  CAS  Google Scholar 

  104. Stanford MG et al (2020) Flash graphene morphologies. ACS Nano 14:13691–13699. https://doi.org/10.1021/acsnano.0c05900

    Article  CAS  Google Scholar 

  105. Algozeeb WA, Savas PE, Luong DX, Chen W, Kittrell C, Bhat M, Shahsavari R, Tour JM (2020) Flash graphene from plastic waste. ACS Nano 14:15595–15604. https://doi.org/10.1021/acsnano.0c06328

    Article  CAS  Google Scholar 

  106. Advincula PA, Luong DX, Chen W, Raghuraman S, Shahsavari R, Tour JM (2021) Flash graphene from rubber waste. Carbon 178:649–656. https://doi.org/10.1016/j.carbon.2021.03.020

    Article  CAS  Google Scholar 

  107. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  108. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prudhomme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539. https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  109. Poh HL, Šaněk F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522. https://doi.org/10.1039/C2NR30490B

    Article  CAS  Google Scholar 

  110. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  111. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  112. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220. https://doi.org/10.1021/jp906325q

    Article  CAS  Google Scholar 

  113. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956. https://doi.org/10.1021/cs200621c

    Article  CAS  Google Scholar 

  114. Lingappan N, Gal Y-S, Lim KT (2013) Synthesis of reduced graphene oxide/polypyrrole conductive composites. Mol Cryst Liq Cryst 585:60–66. https://doi.org/10.1080/15421406.2013.849510

    Article  CAS  Google Scholar 

  115. Sim LC, Leong KH, Ibrahim S, Saravanan P (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electrons mobility and visible-light driven photocatalytic performance. J Mater Chem A 2:5315–5322. https://doi.org/10.1039/C3TA14857B

    Article  CAS  Google Scholar 

  116. Yu H, Zhang B, Bulin C, Li R, Xing R (2016) High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep 6:1–7. https://doi.org/10.1038/srep36143

    Article  CAS  Google Scholar 

  117. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Proc Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  118. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6:1–18. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  119. Liu F, Wang C, Sui X, Riaz MA, Xu M, Wei L, Chen Y (2019) Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carb Energy 1:173–199. https://doi.org/10.1002/cey2.14

    Article  Google Scholar 

  120. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2:15428–15436. https://doi.org/10.1039/C4TA03026E

    Article  CAS  Google Scholar 

  121. Md Disa N, Abu Bakar S, Alfarisa SUHUFA, Mohamed AZMI, Md Isa I, Kamari AZLAN et al (2015) The synthesis of graphene oxide via electrochemical exfoliation method. Adv. Mater. Res. 1109:55–59. https://doi.org/10.4028/www.scientific.net/AMR.1109.55

    Article  Google Scholar 

  122. De Silva KKH, Huang H-H, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199. https://doi.org/10.1016/j.carbon.2017.04.025

    Article  CAS  Google Scholar 

  123. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434. https://doi.org/10.1016/j.cej.2014.04.004

    Article  CAS  Google Scholar 

  124. Sim LC, Leong KH, Saravanan P, Ibrahim S (2015) Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. App Surf Sci 358:122–129. https://doi.org/10.1016/j.apsusc.2015.08.065

    Article  CAS  Google Scholar 

  125. Sengupta I, Chakraborty S, Talukdar M, Pal SK, Chakraborty S (2018) Thermal reduction of graphene oxide: how temperature influences purity. J Mater Res 33:4113–4122. https://doi.org/10.1557/jmr.2018.338

    Article  CAS  Google Scholar 

  126. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152. https://doi.org/10.1016/j.carbon.2009.11.037

    Article  CAS  Google Scholar 

  127. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122. https://doi.org/10.1016/j.carbon.2010.02.001

    Article  CAS  Google Scholar 

  128. Zheng X, Peng Y, Yang Y, Chen J, Tian H, Cui X, Zheng W (2016) Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering. J Raman Spectrosc 48:97–103. https://doi.org/10.1002/jrs.4998

    Article  CAS  Google Scholar 

  129. Huang HH, De Silva KKH, Kumara GRA, Yoshimura M (2018) Structural evolution of hydrothermally derived reduced graphene oxide. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25194-1

    Article  CAS  Google Scholar 

  130. Huang HH, Joshi RK, De Silva KKH, Badam R, Yoshimura M (2018) Fabrication of reduced graphene oxide membranes for desalination. J Memb Sci 572:12–19. https://doi.org/10.1016/j.memsci.2018.10.085

    Article  CAS  Google Scholar 

  131. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956. https://doi.org/10.1021/cm9006603

    Article  CAS  Google Scholar 

  132. Mei X, Meng X, Wu F (2015) Hydrothermal method for the production of reduced graphene oxide. Phys E Low-Dimens Syst Nanostruct 68:81–86. https://doi.org/10.1016/j.physe.2014.12.011

    Article  CAS  Google Scholar 

  133. Rambabu Y, Kumar U, Singhal N, Kaushal M, Jaiswal M, Hain SL, Roy SC (2019) Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. App Surf Sci 485:48–55. https://doi.org/10.1016/j.apsusc.2019.04.041

    Article  CAS  Google Scholar 

  134. Gallegos-Pérez WR, Reynosa-Martínez AC, Soto-Ortiz C, Angélica Álvarez-Lemus M, Barroso-Flores J, García Montalvo V, López-Honorato E (2020) Effect of UV radiation on the structure of graphene oxide in water and its impact on cytotoxicity and As(III) adsorption. Chemosphere 249:126160. https://doi.org/10.1016/j.chemosphere.2020.126160

    Article  CAS  Google Scholar 

  135. Guardia L, Villar-Rodil S, Paredes JI, Rozada R, Martínez-Alonso A, Tascón JMD (2012) UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon 50:1014–1024. https://doi.org/10.1016/j.carbon.2011.10.005

    Article  CAS  Google Scholar 

  136. Mohandoss M, Gupta SS, Nelleri A, Pradeep T, Maliyekkal SM (2017) Solar mediated reduction of graphene oxide. RSC Adv 7:957–963. https://doi.org/10.1039/c6ra24696f

    Article  CAS  Google Scholar 

  137. Hou WC, Chowdhury I, Goodwin DG, Henderson WM, Fairbrother DH, Bouchard D, Zepp RG (2015) Photochemical transformation of graphene oxide in sunlight. Environ Sci Technol 49:3435–3443. https://doi.org/10.1021/nn101390x

    Article  CAS  Google Scholar 

  138. Kauppila J, Kunnas P, Damlin P, Viinikanoja A, Kvarnström C (2013) Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim Acta 89:84–89. https://doi.org/10.1016/j.electacta.2012.10.153

    Article  CAS  Google Scholar 

  139. Jiang Y, Lu Y, Li F, Wu T, Niu L, Chen W (2012) Facile electrochemical codeposition of “clean” graphene–Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem Commun 19:21–24. https://doi.org/10.1016/j.elecom.2012.02.035

    Article  CAS  Google Scholar 

  140. Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A Green Approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659. https://doi.org/10.1021/nn900227d

    Article  CAS  Google Scholar 

  141. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29:159–166. https://doi.org/10.1016/j.bios.2011.08.011

    Article  CAS  Google Scholar 

  142. Peng X-Y, Liu X-X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496. https://doi.org/10.1016/j.carbon.2011.04.047

    Article  CAS  Google Scholar 

  143. Li W, Liu J, Yan C (2013) Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery. Carbon 55:313–320. https://doi.org/10.1016/j.carbon.2012.12.069

    Article  CAS  Google Scholar 

  144. Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H (2013) High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci Rep 3:1–5. https://doi.org/10.1038/srep01929

    Article  Google Scholar 

  145. Zhao F, Dong B, Gao R, Su G, Liu W, Shi L, Xia C, Cao L (2015) A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. App Surf Sci 351:303–308. https://doi.org/10.1016/j.apsusc.2015.05.121

    Article  CAS  Google Scholar 

  146. Chen W, Yan L, Bangal PR (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114:19885–19890. https://doi.org/10.1021/jp107131v

    Article  CAS  Google Scholar 

  147. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114. https://doi.org/10.1039/b917705a

    Article  CAS  Google Scholar 

  148. Aawani E, Memarian N, Dizaji HR (2018) Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J Phys Chem Solids 125:8–15. https://doi.org/10.1016/j.jpcs.2018.09.028

    Article  CAS  Google Scholar 

  149. Iskandar F, Hikmah U, Stavila E, Aimon AH (2017) Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO). RSC Adv 7:52391–52397. https://doi.org/10.1039/c7ra10013b

    Article  CAS  Google Scholar 

  150. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  151. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071

    Article  CAS  Google Scholar 

  152. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432. https://doi.org/10.1021/jp100603h

    Article  CAS  Google Scholar 

  153. Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:1–7. https://doi.org/10.1038/srep10160

    Article  CAS  Google Scholar 

  154. Cobos M, González B, Fernández MJ, Fernández MD (2018) Study on the effect of graphene and glycerol plasticizer on the properties of chitosan-graphene nanocomposites via in situ green chemical reduction of graphene oxide. Int J Biol Macromol 114:599–613. https://doi.org/10.1016/j.ijbiomac.2018.03.129

    Article  CAS  Google Scholar 

  155. Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mat 18:520–524. https://doi.org/10.1038/s41563-019-0341-4

    Article  CAS  Google Scholar 

  156. Zhu Y, Ji H, Cheng H-M, Ruoff RS (2018) Mass production and industrial applications of graphene materials. Natl Sci Rev 5:90–101. https://doi.org/10.1093/nsr/nwx055

    Article  CAS  Google Scholar 

  157. “Top Graphene Companies and Manufacturers in the USA and Globally”. Retrieved from https://www.thomasnet.com/articles/top-suppliers/graphene-companies-manufacturers/#graphenemanufacturers on January 3rd 2021

Download references

Acknowledgements

J.C.D. thanks O.F.O.A. for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Campos-Delgado.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Cruz, A., Ruiz-Hernández, A.R., Vega-Clemente, J.F. et al. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. J Mater Sci 57, 14543–14578 (2022). https://doi.org/10.1007/s10853-022-07514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07514-z

Navigation