Skip to main content
Log in

Fabrication of silver nanowire transparent electrodes at room temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heat-treatment at about 200 °C which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 °C. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraser, D. B.; Cook, H. D. Highly conductive, transparent films of sputtered In2−x SnxO3−y . J. Electrochem. Soc. 1972, 119, 1368–1374.

    Article  CAS  Google Scholar 

  2. Lewis, B. G.; Paine, D. C. Applications and processing of transparent conducting oxides. MRS Bull. 2000, 25, 22–27.

    Article  CAS  Google Scholar 

  3. Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44.

    Article  CAS  Google Scholar 

  4. Kuznetsov, V. L.; Edwards, P. P. Functional materials for sustainable energy technologies: Four case studies. ChemSusChem 2010, 3, 44–58.

    Article  CAS  Google Scholar 

  5. MacDiarmid, A. G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.

    Article  CAS  Google Scholar 

  6. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  7. Kumar, S.; Zhou, C. The race to replace tin-doped indium oxide: Which materials will win? ACS Nano 2010, 4, 11–14.

    Article  CAS  Google Scholar 

  8. Yamaguchi, H.; Eda, G.; Mattevi, C.; Kim, H.; Chhowalla, M. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano 2010, 4, 524–528.

    Article  CAS  Google Scholar 

  9. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., et al. Rollto- roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  10. Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y.; Sun, Y.; Li, Q.; Fan, S.; Jiang, K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    Article  CAS  Google Scholar 

  11. Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotube, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  CAS  Google Scholar 

  12. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  CAS  Google Scholar 

  13. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

    Article  CAS  Google Scholar 

  14. Azulai, D.; Belenkova, T.; Gilon, H.; Barkay, Z.; Markovich, G. Transparent metal nanowire thin films prepared in mesostructured templates. Nano Lett. 2009, 9, 4246–4249.

    Article  CAS  Google Scholar 

  15. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  CAS  Google Scholar 

  16. Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

    Article  CAS  Google Scholar 

  17. Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.

    Article  CAS  Google Scholar 

  18. Gaynor, W.; Lee, J. Y.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2010, 4, 30–34.

    Article  CAS  Google Scholar 

  19. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.

    Article  CAS  Google Scholar 

  20. Lu, Y. C.; Chou, K. S. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology 2010, 21, 215707.

    Article  CAS  Google Scholar 

  21. Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.

    Article  CAS  Google Scholar 

  22. Madaria, A. R.; Kumar, A.; Zhou, C. W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.

    Article  Google Scholar 

  23. Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

    Article  CAS  Google Scholar 

  24. Hardin, B. H.; Gaynor, W.; Ding, I. K.; Rim, S. B.; Peumans, P.; McGehee, M. D. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells. Org. Electron. 2011, 12, 875–879.

    Article  CAS  Google Scholar 

  25. Zhu, Y.; Hill, C. M.; Pan, S. Reductive-oxidation electrogenerated chemiluminescence (ECL) generation at a transparent silver nanowire electrode. Langmuir 2011, 27, 3121–3127.

    Article  CAS  Google Scholar 

  26. Jiu, J. T.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 2009, 114, 333–338.

    Article  CAS  Google Scholar 

  27. Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

    Article  CAS  Google Scholar 

  28. Wang, H. S.; Qiao, X. L; Chen, J. G.; Wang, X. J.; Ding, S. Y. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453.

    Article  CAS  Google Scholar 

  29. Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N. Shapecontrolled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.

    Article  CAS  Google Scholar 

  30. Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.

    Article  CAS  Google Scholar 

  31. Wakuda, D.; Hatamura, M.; Suganuma, K. Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem. Phys. Lett. 2007, 441, 305–308.

    Article  CAS  Google Scholar 

  32. Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater. 2009, 21, 1595–1598.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuno, T., Nogi, M., Karakawa, M. et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011). https://doi.org/10.1007/s12274-011-0172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0172-3

Keywords

Navigation