Skip to main content

Advertisement

Log in

Biosynthesis of copper oxide nanoparticle from clerodendrum phlomidis and their decoration with graphene oxide for photocatalytic and supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The production of energy-storage devices is primarily concerned with cost-effective solutions that increase efficiency and stability. Due to the presence of several oxidation states of copper ions, porous nanostructure, and high surface area that require rapid ion diffusion, graphene oxide (GO)-assisted copper oxide (CuO)-based electrodes have enhanced electrochemical properties in supercapacitor applications such as long cyclic stability and high specific capacitance. In this paper, we describe a green synthesis of copper oxide nanoparticles from Clerodendrum phlomidis aqueous extract and subsequent infusion with graphene oxide (GO) for electrode preparation. The specific capacitance of the GO–CuO nanocomposite electrochemical measurements showed that the samples have incredible cycling stability and have a specific capacitance of approximately 82.1 F g−1 at a scan rate of 10 mV s−1. Furthermore, GO–CuO demonstrated effective photocatalytic degradation of crystal violet (CV) under xenon lamp irradiation, with a degradation efficiency of 56.93%. Thus, the green synthetic pathway of GO–CuO nanocomposites proved to be a potential electrode for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, S. Seal, Prog. Mater. Sci. 56(8), 1178–1271 (2011)

    Article  CAS  Google Scholar 

  2. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7(14), 1876–1902 (2011)

    Article  CAS  Google Scholar 

  3. D. Stoller, S.P. Yanwu Zhu, J. An, R.S. Ruoff, Nano Lett. 8(10), 3498–3502 (2008)

    Article  CAS  Google Scholar 

  4. M. Rajkumar, C. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, Pro. Nat. Sci.-Mater. 25(6), 527–544 (2015)

    Article  CAS  Google Scholar 

  5. J.W. Long, D. Belanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier, MRS Bull. 36(7), 513–522 (2011)

    Article  CAS  Google Scholar 

  6. T. Brousse, D. Belanger, Electro. Chem. Solid-State Lett. 6, 244–248 (2003)

    Article  Google Scholar 

  7. Q.T. Qu, Y.S. Zhu, X.W. Gao, Y.P. Wu, Adv. Energy Mater. 2(8), 950–955 (2012)

    Article  CAS  Google Scholar 

  8. K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang, J. Power Sour. 196(4), 2387–2392 (2011)

    Article  CAS  Google Scholar 

  9. K.H. Lee, S.W. Han, K.Y. Kwon, J.B. Park, J .Colloid Interf. Sci. 403, 127–133 (2013)

    Article  CAS  Google Scholar 

  10. Y.M. Sun, X.L. Hu, W. Luo, F.F. Xia, Y.H. Huang, Adv. Funct. Mater. 23, 2436–2444 (2013)

    Article  CAS  Google Scholar 

  11. B. Zeng, X. Chen, Y. Luo, Q. Liu, W. Zeng, Ceram. Int. 40, 5055–5059 (2014)

    Article  CAS  Google Scholar 

  12. M. Zong, Y. Huang, H. Wu, Y. Zhao, P. Liu, L. Wang, Mater. Lett. 109, 112–115 (2013)

    Article  CAS  Google Scholar 

  13. M. Wang, J. Huang, Z. Tong, W. Li, J. Chen, J. Alloy. Compd. 568, 26–35 (2013)

    Article  CAS  Google Scholar 

  14. L. Cheng, Y. Wang, D. Huang, N. Tronganh, Y. Jiang, H. Yu, N. Ding, G. Ding, Z. Jiao, Mater. Res. Bull. 61, 409–414 (2015)

    Article  CAS  Google Scholar 

  15. W. Tang, L.I. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu et al., Chem. Commun. 47, 10058–10060 (2011)

    Article  CAS  Google Scholar 

  16. K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang, J. Power Sour. 196, 2387–2392 (2011)

    Article  CAS  Google Scholar 

  17. J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, Energy Environ. Sci. 4, 4009–4015 (2011)

    Article  CAS  Google Scholar 

  18. Y.W. Chen, H.B. Zhang, S.T. Lu, C.V. Varanasi, J. Liu, Nanoscale 5, 1067–1073 (2013)

    Article  Google Scholar 

  19. M. Ramzan, R.M. Obodo, S. Mukhtar, S.Z. Ilyas, F. Aziz, N. Thovhogi, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.472

    Article  Google Scholar 

  20. E.A. Mohamed, Heliyon 6(1), e03123 (2020). https://doi.org/10.1016/j.heliyon.2019.e03123

    Article  Google Scholar 

  21. G. Kavith, J. Vinoth Kumar, N. Abirami, R. Arulmozhi, R. Siranjeevi, R. Satish, Arab J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2020.06.033

    Article  Google Scholar 

  22. N.M. El-Shafai, R. Ji, M. Abdelfatah, M.A. Hamada, A.W. Kandeal, I.M. El-Mehasseb, S.W. Sharshir, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157463

    Article  Google Scholar 

  23. H.A. Sarode, D.P. Barai, B.A. Bhanvase, R.P. Ugwekar, V. Saharan, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123102

    Article  Google Scholar 

  24. A. Tkach, A. Matsukovich, N. Krekoten, L. Tabulina, V. Labunov, D. Radziuk, ACS Appl. Nano Mater. (2020). https://doi.org/10.1021/acsanm.0c00852

    Article  Google Scholar 

  25. X. He, X. Mao, C. Zhang, W. Yang, Y. Zhou, Y. Yang, J. Xu, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02737-4

    Article  Google Scholar 

  26. Z. Li, Z. Liu, D. Li, B. Li, Q. Li, Y. Huang, H. Wang, J. Mater. Sci.: Mater. Electron. 26(1), 353–359 (2014). https://doi.org/10.1007/s10854-014-2407-z

    Article  CAS  Google Scholar 

  27. Z. Wang, H.Y. Yue, Z.M. Yu, F. Yao, X. Gao, E.H. Guan, S.S. Song, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01174-7

    Article  Google Scholar 

  28. J. Qi, D. Chen, W. Wang, Y. Sui, Y. He, Q. Meng, Y. Jin, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01325-w

    Article  Google Scholar 

  29. A. Yari, S. Heidari Fathabad, J Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03855-0

    Article  Google Scholar 

  30. P. Wu, L. Feng, Y. Liang, X. Zhang, X. Li, S. Tian, S. Khan, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03099-y

    Article  Google Scholar 

  31. Y. Qin, Y. Liu, T. Zhou, T. Chai, J. Guo, J. Mater. Sci.: Mater. Electron. 28(11), 7609–7614 (2017). https://doi.org/10.1007/s10854-017-6453-1

    Article  CAS  Google Scholar 

  32. N. Kaur, J. Singh, S. Kumar, P. Singh, S. Al-Rashed, H. Kaur, M. Rawat, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04636-5

    Article  Google Scholar 

  33. E.G. Villabona-Leal, A.G. Escobar-Villanueva, V.M. Ovando-Medina, E.B. Pérez-Pérez, P.E. Díaz-Flores, A. Romero-Galarza, A. Marquez-Herrera, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03764-2

    Article  Google Scholar 

  34. F. Tao, Y. Shen, L. Wang, Controlled fabrication of flower-like nickel oxide hierarchical structures and their application in water treatment. Molecules 17, 703–715 (2012)

    Article  CAS  Google Scholar 

  35. F. Soofivand, M. Salavati-Niasari, RSC Adv. 5, 64346–64353 (2015)

    Article  CAS  Google Scholar 

  36. V. Jeyalakshmi, R. Mahalakshmy, K. Krishnamurthy, B. Viswanathan, Titania based catalysts for photoreduction of carbon dioxide: role of modifiers, Indian. J. Chem. Part A InorganicPhys. Theor. Anal. 51, 1263 (2012)

    Google Scholar 

Download references

Acknowledgements

Facilities utilized from DST/FIST were sanctioned to the Department of Chemistry and HRTEM Facility at srmist setup with support from MNRE (Project No.31/03/2014-15/PVSE-R&D), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyalakshmi Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, S., Radhakrishnan, J., Sengodan, P. et al. Biosynthesis of copper oxide nanoparticle from clerodendrum phlomidis and their decoration with graphene oxide for photocatalytic and supercapacitor application. J Mater Sci: Mater Electron 33, 9403–9411 (2022). https://doi.org/10.1007/s10854-021-07340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07340-0

Navigation