Skip to main content

Advertisement

Log in

One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MoSe2 nanosheets spheres (MoSe2·NSs) were synthesized directly on the surface of reduced graphene oxide (rGO) nanosheets (MoSe2–rGO) using a simple one-pot hydrothermal approach, which was used for supercapacitor. The synergistic effect of the MoSe2·NSs and the highly conductive rGO network endows the MoSe2–rGO composite excellent electrochemical performance. The effect of the content of graphene in the composite were investigated in details. The optimal electrode exhibits a high specific capacitance of 814.4 F g−1 at 1 A g−1 in 2 M KOH. Moreover, the assembled supercapacitor delivers a high specific capacitance of 215.7 F g−1 at 1 A g−1 and retains 81.7% of the initial capacitance at 10 A g−1 after 5000 cycles. It suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.-H. Choi, C. Lee, S. Cho, G. Moon, B.-S. Kim, H. Chang, H.D. Jang, High capacitance and energy density supercapacitor based on biomass-derived activated carbons with reduced graphene oxide binder. Carbon 132, 16–24 (2018). https://doi.org/10.1016/j.carbon.2018.01.105

    Article  Google Scholar 

  2. M. Liu, Z. Wang, J. Liu, G. Wei, J. Du, Y. Li, C. An, J. Zhang, Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A 5, 1035–1042 (2017). https://doi.org/10.1039/c6ta08206h

    Article  Google Scholar 

  3. V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application. Electrochim. Acta 265, 514–522 (2018). https://doi.org/10.1016/j.electacta.2018.01.075

    Article  Google Scholar 

  4. W. Yang, L. He, X. Tian, M. Yan, H. Yuan, X. Liao, J. Meng, Z. Hao, L. Mai, Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small (2017). https://doi.org/10.1002/smll.201700639

    Google Scholar 

  5. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater.Chem. 22, 19161–19167 (2012). https://doi.org/10.1039/c2jm33177b

    Article  Google Scholar 

  6. B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J.-B. Xu, X.Z. Fu, R. Sun, C.-P. Wong, NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochim. Acta 192, 205–215 (2016). https://doi.org/10.1016/j.electacta.2016.01.211

    Article  Google Scholar 

  7. S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard, X.L. Zhang, B. Cao, Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5, 1700659 (2018). https://doi.org/10.1002/advs.201700659

    Article  Google Scholar 

  8. H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density. Nanotechnology 28, 445401 (2017). https://doi.org/10.1088/1361-6528/aa8948

    Article  Google Scholar 

  9. S. Mouri, W. Zhang, D. Kozawa, Y. Miyauchi, G. Eda, K. Matsuda, Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 9, 6674–6679 (2017). https://doi.org/10.1039/c7nr01598d

    Article  Google Scholar 

  10. J. Luo, P. Xu, D. Zhang, L. Wei, D. Zhou, W. Xu, J. Li, D. Yuan, Synthesis of 3D-MoO2 microsphere supported MoSe2 as an efficient electrocatalyst for hydrogen evolution reaction. Nanotechnology 28, 465404 (2017). https://doi.org/10.1088/1361-6528/aa8947

    Article  Google Scholar 

  11. B. Zheng, Y. Chen, F. Qi, X. Wang, W. Zhang, Y. Li, X. Li, 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 4, 025092 (2017). https://doi.org/10.1088/2053-1583/aa6e65

    Article  Google Scholar 

  12. S. Mao, Z. Wen, S. Ci, X. Guo, K.K. Ostrikov, J. Chen, Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11, 414–419 (2015). https://doi.org/10.1002/smll.201401598

    Article  Google Scholar 

  13. K. Palanisamy, Y. Kim, H. Kim, J.M. Kim, W.S. Yoon, Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J. Power Sour. 275, 351–361 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.001

    Article  Google Scholar 

  14. H. Tang, K. Dou, C.C. Kaun, Q. Kuang, S. Yang, MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater. Chem. A 2, 360–364 (2014). https://doi.org/10.1039/c3ta13584e

    Article  Google Scholar 

  15. L. Ma, L. Xu, X. Zhou, X. Xu, L. Zhang, Synthesis of a hierarchical MoSe2/C hybrid with enhanced electrochemical performance for supercapacitors. RSC Adv. 6, 91621–91628 (2016). https://doi.org/10.1039/c6ra16157j

    Article  Google Scholar 

  16. S.K. Balasingam, J.S. Lee, Y. Jun, Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 44, 15491–15498 (2015). https://doi.org/10.1039/c5dt01985k

    Article  Google Scholar 

  17. Y.P. Gao, K.J. Huang, H.L. Shuai, L. Liu, Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater. Lett. 209, 319–322 (2017). https://doi.org/10.1016/j.matlet.2017.08.044

    Article  Google Scholar 

  18. S.S. Karade, B.R. Sankapal, Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: symmetric all-solid-state supercapacitor. J. Electroanal. Chem. 802, 131–138 (2017). https://doi.org/10.1016/j.jelechem.2017.08.017

    Article  Google Scholar 

  19. H. Li, L. Chen, Y. Zhang, X. Ji, S. Chen, H. Song, C. Li, H. Tang, Synthesis of MoSe2/reduced graphene oxide composites with improved tribological properties for oil-based additives. Cryst. Res. Technol. 49, 204–211 (2014). https://doi.org/10.1002/crat.201300317

    Article  Google Scholar 

  20. J. Sha, C. Gao, S.K. Lee, Y. Li, N. Zhao, J.M. Tour, Preparation of three-dimensional graphene foams using powder metallurgy templates. ACS Nano 10, 1411–1416 (2016). https://doi.org/10.1021/acsnano.5b06857

    Article  Google Scholar 

  21. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011). https://doi.org/10.1038/nmat3001

    Article  Google Scholar 

  22. K. Chen, C. Li, Z. Chen, L. Shi, S. Reddy, H. Meng, Q. Ji, Y. Zhang, Z. Liu, Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Res. 9, 249–259 (2016). https://doi.org/10.1007/s12274-016-1013-1

    Article  Google Scholar 

  23. H.J. Qiu, Y. Guan, P. Luo, Y. Wang, Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron. 89, 85–95 (2017). https://doi.org/10.1016/j.bios.2015.12.029

    Article  Google Scholar 

  24. S. Mao, G. Lu, J. Chen, Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015). https://doi.org/10.1039/c4nr06609j

    Article  Google Scholar 

  25. H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011). https://doi.org/10.1021/jp1120299

    Article  Google Scholar 

  26. L. Bao, T. Li, S. Chen, C. Peng, L. Li, Q. Xu, Y. Chen, E. Ou, W. Xu 3D Graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small (2017). https://doi.org/10.1002/smll.201602077

    Google Scholar 

  27. E.G. Da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014). https://doi.org/10.1002/aenm.201301380

    Article  Google Scholar 

  28. K.J. Huang, J.Z. Zhang, Y. Fan, Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater. Lett. 152, 244–247 (2015). https://doi.org/10.1016/j.matlet.2015.03.130

    Article  Google Scholar 

  29. S.K. Balasingam, J.S. Lee, Y. Jun, Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications. Dalton Trans. 45, 9646–9653 (2016). https://doi.org/10.1039/c6dt00449k

    Article  Google Scholar 

  30. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  Google Scholar 

  31. X. Liu, J.Z. Zhang, K.-J. Huang, P. Hao, Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem. Eng. J. 302, 437–445 (2016). https://doi.org/10.1016/j.cej.2016.05.074

    Article  Google Scholar 

  32. Y. Liu, T. Gao, H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim. Acta 229, 239–252 (2017). https://doi.org/10.1016/j.electacta.2017.01.142

    Article  Google Scholar 

  33. J. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.T.F. Rodrigues, K. Kalaga, P. Dong, P. Xiao, Y. Zhang, R. Vajtai, P.M. Ajayan, 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim. Acta 176, 103–111 (2015). https://doi.org/10.1016/j.electacta.2015.06.138

    Article  Google Scholar 

  34. S. Sankar, A.I. Inamdar, H. Im, S. Lee, D.Y. Kim, Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceram. Int. 44, 17514–17521 (2018). https://doi.org/10.1016/j.ceramint.2018.05.207

    Article  Google Scholar 

  35. J.K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018). https://doi.org/10.1002/adma.201705789

    Article  Google Scholar 

  36. J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo, X. Wang, Q. Wu, L. Yang, Y. Ma, Z. Hu, Porous 3D few-layer graphene-like carbon forultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017). https://doi.org/10.1002/adma.201604569

    Article  Google Scholar 

  37. X. Gao, H. Yue, E. Guo, L. Yao, X. Lin, B. Wang, E. Guan, D. Bychanok, In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode. J Mater. Sci. Mater. Electron. 28, 17939–17947 (2017). https://doi.org/10.1007/s10854-017-7736-2

    Article  Google Scholar 

  38. S. Ahmed, M. Rafat, Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Mater. Res. Express (2017) https://doi.org/10.1088/2053-1591/aaa232

    Google Scholar 

  39. S. Ahmed, M. Rafat, Effect of lithium and sodium salt on the performance of Nb2O5/rGO nanocomposite based supercapacitor. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aaace2

    Google Scholar 

  40. A. Sultan, R. Mohd, M.K. Singh, S. Hashmi, A Free-standing, flexible PEDOT-PSS film and its nanocomposites with graphene nano-platelets as electrodes for quasi-solid-state supercapacitors. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aad0b8

    Google Scholar 

  41. Y. Yang, F. Huilong, R. Gedeng, X. Changsheng, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163–8168 (2014). https://doi.org/10.1002/adma.201402847

    Article  Google Scholar 

  42. W. Lu, M. Arif, G. Duan, S. Chen, X. Liu, A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles. J. Power Sour. 355, 53–61 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.054

    Article  Google Scholar 

  43. P. Hui, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet arrays and nitrogen-doped carbon nanosheet. Acs Sustaina Chem Eng 5, 59514–59563 (2017). https://doi.org/10.1021/acssuschemeng.7b00729

    Google Scholar 

  44. S.N. Tiruneh, B. Kang, S.H. Kwag, Y.H. Lee, M.S. Kim, D.H. Yoon, Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem. Eur. J. 24, 3263–3270 (2018). https://doi.org/10.1002/chem.201705445

    Article  Google Scholar 

  45. K. Ghosh, C.Y. Yue, Development of 3D MoO3/graphene aerogel and sandwich-type polyaniline decorated porous MnO2-graphene hybrid film based high performance all-solid-state asymmetric supercapacitors. Electrochim. Acta 276, 47–63 (2018). https://doi.org/10.1016/j.electacta.2018.04.16

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fundamental research foundation for University of Heilongjiang province (Grant No. LGYC2018JQ012), the Innovative Talent Fund of Harbin city (Grant No. 2016RAQXJ185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan Yue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2800 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yue, H.Y., Yu, Z.M. et al. One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor. J Mater Sci: Mater Electron 30, 8537–8545 (2019). https://doi.org/10.1007/s10854-019-01174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01174-7

Navigation