Skip to main content

Advertisement

Log in

An efficient and viable photodegradation of a textile Reactive yellow-86 dye under direct sunlight by multi-structured Fe2O3 encapsulated with phytochemicals of R. Indica

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of multi-structured Fe2O3 nanoparticles is the matter of countless concern for long time in the chemical synthesis domain due to its potential applications. Eco-friendly green synthesis of multi-structured Fe2O3 strategy is adopted by utilizing phytochemicals from R. indica leaf extracts. Synthesized Fe2O3 has been characterized for physiochemical, morphological, topological, and elemental properties using different characterization tools such as x-ray diffractometer (XRD), fourier-transform infrared spectrometer (FTIR), field emission scanning electron microscope (FESEM), tunneling electron microscope (TEM), and energy dispersive x-ray (EDX). FESEM and TEM micrographs have revealed that Fe2O3 comprises unique hexagonal, rectangular slabs, pentagonal plates, rods of nano scale. The functional groups C=O, C–O, and C=C of different phytochemicals have acted as capping agents, while –OH groups of polyphenols play their role as reducing agents. The purity and crystallinity are revealed by EDX and XRD, respectively. Fe2O3 has revealed visible-light photocatalytic behaviour with Reactive Yellow-86 dye (9 × 10–2 mM) removal efficiency of 98% within 60 min of incubation in direct solar light at an optimum dosage of 30 mg. For every 10 mg NPs dosage increase, the apparent rate constant enhanced by two times. Even after five recycles, the degradation efficiency of dye by NPs remained ≥ 90% indicates it reusability. Thus, the current research work offering a novel synthesis of Fe2O3 by phytoreduction paves the way towards an extremely competent photocatalyst which would be highly beneficial in textile industry’s wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Mondal, A. Sharma, RSC Adv. 6, 83589 (2016)

    CAS  Google Scholar 

  2. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27, 11698 (2016)

    CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, RSC Adv. 6, 107785 (2016)

    CAS  Google Scholar 

  4. F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mol. Liq. 225, 645 (2017)

    CAS  Google Scholar 

  5. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 6, 26895 (2016)

    CAS  Google Scholar 

  6. B. Ajitha, Y.A. Kumar Reddy, P.S. Reddy, H.J. Jeon, C.W. Ahn, RSC Adv. 6, 36171 (2016)

    CAS  Google Scholar 

  7. S. Campisi, M. Schiavoni, C.E. Chan-Thaw, A. Villa, Catalysts 6, 185 (2016)

    Google Scholar 

  8. S. Razzaque, S.Z. Hussain, I. Hussain, B. Tan, Polymers Basel. 8, 156 (2016)

    Google Scholar 

  9. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnology (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  10. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186 (2020)

    CAS  Google Scholar 

  11. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Ceram. Int. 46, 6095 (2020)

    CAS  Google Scholar 

  12. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri, M. Salavati-Niasari, J. Alloys Compd. 791, 792 (2019)

    CAS  Google Scholar 

  13. S.A. Heidari-Asil, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Int. J. Hydrog. Energy 45, 22761 (2020)

    CAS  Google Scholar 

  14. A. López-Serrano, R.M. Olivas, J.S. Landaluze, C. Cámara, Anal. Methods 6, 38 (2014)

    Google Scholar 

  15. J. Braunschweig, J. Bosch, R.U. Meckenstock, N. Biotechnol. 30, 793 (2013)

    CAS  Google Scholar 

  16. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, J. Alloys Compd. 763, 314 (2018)

    CAS  Google Scholar 

  17. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Adv. Powder Technol. 28, 747 (2017)

    CAS  Google Scholar 

  18. S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sep. Purif. Technol. 248, 117062 (2020)

    CAS  Google Scholar 

  19. B. Ahmmad, K. Leonard, M. SharifulIslam, J. Kurawaki, M. Muruganandham, T. Ohkubo, Y. Kuroda, Adv. Powder Technol. 24, 160 (2013)

    CAS  Google Scholar 

  20. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, A. Pugazhendhi, J. Photochem. Photobiol. B Biol. 192, 74 (2019)

    CAS  Google Scholar 

  21. I. Bibi, N. Nazar, S. Ata, M. Sultan, A. Ali, A. Abbas, K. Jilani, S. Kamal, F.M. Sarim, M.I. Khan, F. Jalal, M. Iqbal, J. Mater. Res. Technol. 8, 6115 (2019)

    CAS  Google Scholar 

  22. S. Bishnoi, A. Kumar, R. Selvaraj, Mater. Res. Bull. 97, 121 (2018)

    CAS  Google Scholar 

  23. H.R. Ali, H.N. Nassar, N.S. El-Gendy, Energy Sources Part A Recover. Util. Environ. Eff. 39, 1425 (2017)

    CAS  Google Scholar 

  24. H. Muthukumar, N.I. Chandrasekaran, S. Naina Mohammed, S. Pichiah, M. Manickam, J. Ind. Eng. Chem. 45, 121 (2017)

    CAS  Google Scholar 

  25. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. Khan Shinwari, M. Maaza, Green Chem. Lett. Rev. 10, 186 (2017)

    CAS  Google Scholar 

  26. P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, S. Gadi, C.S.L. Cherukuri, S. Barla, S.V.N. Pammi, Heliyon 5, e02765 (2019)

    Google Scholar 

  27. S. Naz, M. Islam, S. Tabassum, N.F. Fernandes, E.J. Carcache de Blanco, M. Zia, J. Mol. Struct. 1185, 1 (2019)

    CAS  Google Scholar 

  28. V.G. VijuKumar, A.A. Prem, Orient. J. Chem. 34, 2583 (2018)

    CAS  Google Scholar 

  29. M. Martínez-Cabanas, M. López-García, J.L. Barriada, R. Herrero, M.E. Sastre de Vicente, Chem. Eng. J. 301, 83 (2016)

    Google Scholar 

  30. K.S. Siddiqi, A. ur Rahman, Tajuddin, A. Husen, Nanoscale Res. Lett. 1, 1 (2016). https://doi.org/10.1186/s11671-016-1714-0

    Article  CAS  Google Scholar 

  31. D. Mukherjee, S. Ghosh, S. Majumdar, K. Annapurna, J. Environ. Chem. Eng. 4, 639 (2016)

    CAS  Google Scholar 

  32. R. Saeed, S. Ali, H. Ullah, M. Ullah, S. Hassan, S. Ahmed, S. Akhwan, Am. J. Phytomed. Clin. Ther. 2, 1370 (2014)

    Google Scholar 

  33. K. Zahid, M. Ahmed, F. Khan, Nat. Prod. Res. 32, 1239 (2018)

    CAS  Google Scholar 

  34. N. Akhtar, B.M. Ihsan-ul-Haq, Arab. J. Chem. 11, 1223 (2018)

    CAS  Google Scholar 

  35. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    CAS  Google Scholar 

  36. R. Jenkins, R.L. Snyder, Introduction to X-Ray Powder Diffractometry (Wiley, Hoboken, NJ, 1996)

    Google Scholar 

  37. J. Singh, H. Kaur, D. Kukkar, V.K. Mukamia, S. Kumar, M. Rawat, Mater. Res. Express 6, 115007 (2019)

    CAS  Google Scholar 

  38. M. Alagiri, S.B.A. Hamid, J. Mater. Sci. Mater. Electron. 25, 3572 (2014)

    CAS  Google Scholar 

  39. W. H. Bragg and W. L. Bragg, Proc. R. Soc. London. Ser. A. 88, 428 (1913).

  40. S.M. Ghoreishi, M. Behpour, M. Khayatkashani, Phys. E Low-Dimensional Syst. Nanostruct. 44, 97 (2011)

    CAS  Google Scholar 

  41. I. Jahan, F. Erci, I. Isildak, Anal. Lett. 52, 1860 (2019)

    CAS  Google Scholar 

  42. A. Tavousi, E. Ahmadi, L. Mohammadi-Behzad, V. Riahifar, F. Maghemi, Microchem. J. 158, 105159 (2020)

    CAS  Google Scholar 

  43. M.A. Bhosale, D. Ummineni, T. Sasaki, D. Nishio-Hamane, B.M. Bhanage, J. Mol. Catal. A Chem. 404–405, 8 (2015)

    Google Scholar 

  44. Z. Pan, Y. Lin, B. Sarkar, G. Owens, Z. Chen, J. Colloid Interface Sci. 558, 106 (2019)

    CAS  Google Scholar 

  45. J.R. Peralta-Videa, Y. Huang, J.G. Parsons, L. Zhao, L. Lopez-Moreno, J.A. Hernandez-Viezcas, J.L. Gardea-Torresdey, Nanotechnol. Environ. Eng. (2016). https://doi.org/10.1007/s41204-016-0004-5

    Article  Google Scholar 

  46. K.V. Kumar, K. Porkodi, F. Rocha, Catal. Commun. 9, 82 (2008)

    CAS  Google Scholar 

  47. K. Singh, J. Singh, M. Rawat, SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0957-7

    Article  Google Scholar 

  48. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-019-0357-y

    Article  Google Scholar 

  49. P. Yugandhar, T. Vasavi, B. Shanmugam, P. Uma Maheswari Devi, K. Sathyavelu Reddy, N. Savithramma, Mater. Res. Express 6, 065034 (2019)

    CAS  Google Scholar 

  50. H. Kaur, V. Goyal, J. Singh, S. Kumar, M. Rawat, Micro. Nano Lett. 14, 1229 (2019)

    CAS  Google Scholar 

  51. H. Kaur, S. Kaur, J. Singh, M. Rawat, S. Kumar, Mater. Res. Express 6, 95034 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Vice-Chancellor, SGGSW for providing necessary laboratory facilities. The authors extend their appreciation to the Researchers supporting project number (RSP-2020/200), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harpreet Kaur or Mohit Rawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Navpreet Kaur and Jagpreet Singh have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Singh, J., Kumar, S. et al. An efficient and viable photodegradation of a textile Reactive yellow-86 dye under direct sunlight by multi-structured Fe2O3 encapsulated with phytochemicals of R. Indica. J Mater Sci: Mater Electron 31, 21233–21247 (2020). https://doi.org/10.1007/s10854-020-04636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04636-5

Navigation