Skip to main content
Log in

Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped activated carbon (NAC) with a high specific surface area was successfully fabricated through graphitization derived from cotton and ammonia doping. The obtained NAC exhibits an enhanced specific capacitance of 156.4 F g−1 at 0.5 A g−1 and good cycling stability with capacitance retention of 95% after 5000 cycles. Hydrothermal route was used to synthesize CuCo2O4 nanoneedles with diameter of 20 to 50 nm. CuCo2O4 electrode showed good electrochemical performance with specific capacitance of 390 F g−1 at 0.5 A g−1 and high stability. Based on the two electrodes, an all-solid-state asymmetric supercapacitor (ASC) was assembled, which can achieve specific capacitance of 26.2 F g−1 at 1 A g−1, energy density of 8.2 Wh kg−1 at a power density of 750 W kg−1 and still retains 5.6 Wh kg−1 at power density of 7500 W kg−1. Two ASCs in series successfully illuminated 52 LEDs connected in parallel, indicating the practical application of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  2. J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  Google Scholar 

  3. B.H. Qu, L.L. Hu, Q.H. Li, Y.G. Wang, L.B. Chen, T.H. Wang, High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl. Mater. Interfaces 6, 731–736 (2014)

    Article  Google Scholar 

  4. J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, Y.X. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5, 1700985 (2018)

    Article  Google Scholar 

  5. R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)

    Article  Google Scholar 

  6. Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, Y.X. Jin, Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017)

    Article  Google Scholar 

  7. S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018)

    Article  Google Scholar 

  8. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)

    Article  Google Scholar 

  9. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  Google Scholar 

  10. D.Z. Zhu, Y.W. Wang, L.H. Gan, M.X. Liu, K. Cheng, Y.H. Zhao, X.X. Deng, D.M. Sun, Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochim. Acta 158, 166–174 (2015)

    Article  Google Scholar 

  11. K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018)

    Article  Google Scholar 

  12. J.G. Wang, H.Z. Liu, H.H. Sun, W. Hua, H.W. Wang, X.R. Liu, B.Q. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)

    Article  Google Scholar 

  13. W. Yang, W. Yang, L.N. Kong, A.L. Song, X.J. Qin, G.J. Shao, Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127, 557–567 (2018)

    Article  Google Scholar 

  14. J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.L. Zhao, Y.X. Jin, Facile construction of 3D reduced graphene oxide wrapped Ni3S2 nanoparticles on Ni foam for high-performance asymmetric supercapacitor electrodes. Part Part Syst Char 34, 1700196 (2017)

    Article  Google Scholar 

  15. J. Ding, H.L. Wang, Z. Li, K. Cui, D. Karpuzov, X.H. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015)

    Article  Google Scholar 

  16. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  Google Scholar 

  17. E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2014)

    Article  Google Scholar 

  18. Y.X. Huang, Y. Liu, G.J. Zhao, J.Y. Chen, Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. J. Mater. Sci. 52, 478–488 (2017)

    Article  Google Scholar 

  19. C. Ma, J.N. Chen, Q.C. Fan, J.C. Guo, W.N. Liu, E.C. Cao, J.L. Shi, Y. Song, Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode. J. Mater. Sci. 53, 4527–4539 (2018)

    Article  Google Scholar 

  20. C.J. Yuan, H.B. Lin, H.Y. Lu, E.D. Xing, Y.S. Zhang, B.Y. Xie, Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl. Energy 178, 260–268 (2016)

    Article  Google Scholar 

  21. W. Wang, L.J. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Z. Sun, All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. J. Mater. Sci. Mater Electron. 29, 2120–2130 (2018)

    Article  Google Scholar 

  22. M. Zhou, F. Pu, Z. Wang, S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)

    Article  Google Scholar 

  23. L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104–5111 (2014)

    Article  Google Scholar 

  24. Y.C. Yao, P. Liu, X.Y. Li, S.Z. Zeng, T.B. Lan, H.T. Huang, X.R. Zeng, J.Z. Zou, Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors. Dalton Trans. 47, 7316–7326 (2018)

    Article  Google Scholar 

  25. D. Zeng, Y.P. Dou, M. Li, M. Zhou, H.M. Li, K. Jiang, F. Yang, J.J. Peng, Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J. Mater. Sci. 53, 8372–8384 (2018)

    Article  Google Scholar 

  26. K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)

    Article  Google Scholar 

  27. B.J. Jiang, C.G. Tian, L. Wang, L. Sun, C. Chen, X.Z. Nong, Y.J. Qiao, H.G. Fu, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction. Appl. Surf. Sci. 258, 3438–3443 (2012)

    Article  Google Scholar 

  28. X.Q. Fan, L.X. Zhang, G.B. Zhang, Z. Shu, J.L. Shi, Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61, 423–430 (2013)

    Article  Google Scholar 

  29. J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)

    Article  Google Scholar 

  30. S. Liu, K.S. Hui, K.N. Hui, Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl. Mater. Interfaces 8, 3258–3267 (2016)

    Article  Google Scholar 

  31. S.D. Liu, D.X. Ni, H.F. Li, K.N. Hui, C.Y. Ouyang, S.C. Jun, Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co)dagger. J. Mater. Chem. A 6, 10674–10685 (2018)

    Article  Google Scholar 

  32. S. Liu, K.S. Hui, K.N. Hui, J.M. Yun, K.H. Kim, Vertically stacked bilayer CuCo2O4/MnCO2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J. Mater. Chem. A 4, 8061–8071 (2016)

    Article  Google Scholar 

  33. M.B. Vazquez-Santos, E. Geissler, K. Laszlo, J.N. Rouzaud, A. Martinez-Alonso, J.M.D. Tascon, Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J. Phys. Chem. C 116, 257–268 (2012)

    Article  Google Scholar 

  34. L. Sun, C.G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H.G. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20, 564–574 (2014)

    Article  Google Scholar 

  35. T.C. Nagaiah, A. Bordoloi, M.D. Sanchez, M. Muhler, W. Schuhmann, Mesoporous nitrogen-rich carbon materials as catalysts for the oxygen reduction reaction in alkaline solution. ChemSusChem 5, 637–641 (2012)

    Article  Google Scholar 

  36. K.M. Horax, S.J. Bao, M.Q. Wang, Y.A. Li, Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chin. Chem. Lett. 28, 2290–2294 (2017)

    Article  Google Scholar 

  37. L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)

    Article  Google Scholar 

  38. Y.F. Zhao, W. Ran, J. He, Y.F. Song, C.M. Zhang, D.B. Xiong, F.M. Gao, J.S. Wu, Y.Y. Xia, Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Interfaces 7, 1132–1139 (2015)

    Article  Google Scholar 

  39. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14, 831–838 (2014)

    Article  Google Scholar 

  40. J.B. Cheng, H.L. Yan, Y. Lu, K.W. Qiu, X.Y. Hou, J.Y. Xu, L. Han, X.M. Liu, J.K. Kim, Y.S. Luo, Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3, 9769–9776 (2015)

    Article  Google Scholar 

  41. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A Mater. 82, 567–573 (2006)

    Article  Google Scholar 

  42. K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 7, 6648–6659 (2017)

    Article  Google Scholar 

  43. J. Wen, S.Z. Li, K. Zhou, Z.C. Song, B.R. Li, Z. Chen, T. Chen, Y.X. Guo, G.J. Fang, Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016)

    Article  Google Scholar 

  44. Y.C. Tsai, W.D. Yang, K.C. Lee, C.M. Huang, An effective electrodeposition mode for porous MnO2/Ni foam composite for asymmetric supercapacitors. Materials 9, 246 (2016)

    Article  Google Scholar 

  45. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater. Chem. Phys. 170, 266–275 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51601220 and 51671214), the Science and Technology Planning Project of Jiangsu Province (No. BY2016026-05) and the Laboratory Open Fund (II and III Project) of China University of Mining and Technology (No. 20180212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaojian Ren or Jinlong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Chen, D., Wang, W. et al. Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J Mater Sci: Mater Electron 30, 9877–9887 (2019). https://doi.org/10.1007/s10854-019-01325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01325-w

Navigation