Skip to main content
Log in

Effect of Ni on the Au embrittlement in Sn/Au/Ni solder bump

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Ni on the gold embrittlement in the Sn/Au/Ni solder bump was studied in this paper. The mechanical properties of (Au1−x,Nix)Sn4 (x = 0, 0.25, 0.5) bulk, β-Sn/(Au1−x,Nix)Sn4 interface and Ni3Sn4/(Au1−x,Nix)Sn4 interface were calculated based on first principles, respectively. For bulk (Au1−x,Nix)Sn4, the ratio between bulk modulus and shear modulus shows that the addition of Ni into bulk AuSn4 would increase the brittleness, which could lead to bulk gold embrittlement. For the (100) β-Sn/(080) (Au1−x,Nix)Sn4 interface, the introduction of Ni into AuSn4 would increase the adhesion energy of interface, indicating strengthening the interface. While for (111) Ni3Sn4/(080) (Au1−x,Nix)Sn4 interface, the inclusion of Ni into AuSn4 would decrease the adhesion energy and deteriorate the bonding strength of interface. Furthermore, the cracks are prone to initiate at the (111) Ni3Sn4/(080) (Au1−x,Nix)Sn4 interface in the ideal tensile simulation, indicating that the introduction of Ni into AuSn4 would cause the interfacial gold embrittlement, which is usually not concerned in previous theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Wang, S. Xue, W. Long, B. Wang, J. Wang, P. Zhang, Effects of extreme thermal shock on microstructure and mechanical properties of Au–12Ge/Au/Ni/Cu solder joint. Metals 10(10), 1373–1386 (2020)

    Article  Google Scholar 

  2. A.K. Gain, L. Zhang, Nanoindentation creep, elastic properties, and shear strength correlated with the structure of Sn-9Zn-0.5nano-Ag alloy for advanced green electronics. Metals 10(9), 1137–1148 (2020)

    Article  CAS  Google Scholar 

  3. Y. Tian, Y. Wang, F. Guo, L. Ma, J. Han, The evolution of IMCs in single crystal Sn3.0Ag0.5Cu and Sn3.0Ag3.0Bi3.0In BGA solder joints with Au/Ni/Cu pads under current stressing. J. Electron. Mater. 48(5), 2770–2779 (2019)

    Article  CAS  Google Scholar 

  4. Y. Lin, H. Li, G. Chen, Effect of nickel metallization thickness on microstructure evolution and mechanical properties in Sn3.0Ag0.5Cu/Au/Ni/Cu solder joints. J. Mater. Sci. Mater. Electron. 31, 11569–11580 (2020)

    Article  CAS  Google Scholar 

  5. T. Ariga, Y. Zhu, M. Ito, T. Takatsuka, S. Terauchi, A. Kurokawa, K. Inagaki, Quantification of elemental area densities in multiple metal layers (Au/Ni/Cu) on a Cr-coated quartz glass substrate for certification of NMIJ CRM 5208-a. Anal Bioanal Chem 410(11), 2849–2857 (2018)

    Article  CAS  Google Scholar 

  6. A.K. Gain, L. Zhang, Y.C. Chan, Microstructure, elastic modulus and shear strength of alumina (Al2O3) nanoparticles-doped tin–silver–copper (Sn–Ag–Cu) solders on copper (Cu) and gold/nickel (Au/Ni)-plated Cu substrates. J. Mater. Sci. Mater. Electron. 26, 7039–7048 (2015)

    Article  CAS  Google Scholar 

  7. C.E. Ho, M.K. Lu, P.T. Lee, Y.H. Huang, W.L. Chou, TEM investigation of interfacial microstructure and fracture mode of the Sn–Ag–Cu/Ni joint system. Mater. Sci. Eng. A 706, 269–278 (2017)

    Article  CAS  Google Scholar 

  8. A.K. Gain, L. Zhang, Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder. J. Mater. Sci. Mater. Electron. 28(20), 15718–15730 (2017)

    Article  CAS  Google Scholar 

  9. Y. Yen, P. Tsai, Y. Fang et al., Interfacial reactions on Pb-free solders with Au/Pd/Ni/Cu multilayer substrates. J. Alloys Compd. 503(1), 25–30 (2010)

    Article  CAS  Google Scholar 

  10. J.-W. Yoon, B.-I. Noh, J.-H. Yoon, H.-B. Kang, S.-B. Jung, Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn–Ag–Cu solder and ENEPIG substrate during a reflow process. J. Alloys Compd. 509(9), L153–L156 (2011)

    Article  CAS  Google Scholar 

  11. T. Laurila, V. Vuorinrn, T. Mattila, J.K. Kivilahti, Analysis of the redeposition of AuSn4 on Ni/Au contact pads when using SnPbAg, SnAg, and SnAgCu solders. J. Electron. Mater. 34(1), 103–111 (2005)

    Article  CAS  Google Scholar 

  12. K.Y. Lee, M. Li, Formation of intermetallic compounds in SnPbAg, SnAg, and SnAgCu solders on Ni/Au metallization. Metall. Mater. Trans. A 32(10), 2666–2668 (2001)

    Article  Google Scholar 

  13. C.E. Ho, G.L. Luo, A.H. Lin, C.R. Kao, Formation and resettlement of (AuxNi1−x)Sn4 in solder joints of ball-grid. J. Electron. Mater. 29(10), 1175–1181 (2000)

    Article  CAS  Google Scholar 

  14. N. Duan, J. Scheer, J. Bielen, M. van Kleef, The influence of Sn–Cu–Ni(Au) and Sn–Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates. Microelectron. Reliab. 43(8), 1317–1327 (2003)

    Article  CAS  Google Scholar 

  15. L.C. Shiau, C.E. Ho, C.R. Kao, Reactions between Sn–Ag–Cu lead-free solders and the Au/Ni surface finish in advanced electronic packages. Solder. Surf. Mount Technol. 14, 25–29 (2002)

    Article  CAS  Google Scholar 

  16. L.Y. Hsiao, G.Y. Jang, K.J. Wang, J.G. Duh, Inhibiting AuSn4 formation by controlling the interfacial reaction in solder joints. J. Electron. Mater. 36(11), 1476–1482 (2007)

    Article  CAS  Google Scholar 

  17. C.E. Ho, L.C. Shiau, C.R. Kao, Inhibiting the formation of (Au1–xNix)Sn4 and reducing the consumption of Ni metallization in solder joints. J. Electron. Mater. 31(11), 1264–1269 (2002)

    Article  CAS  Google Scholar 

  18. C.W. Chang, C.E. Ho, S.C. Yang, C.R. Kao, Kinetics of AuSn4 migration in lead-free solders. J. Electron. Mater. 35(11), 1948–1954 (2006)

    Article  CAS  Google Scholar 

  19. Y.J. Chen, T.L. Yang, J.J. Yu, C.L. Kao, C.R. Kao, Gold and palladium embrittlement issues in three-dimensional integrated circuit interconnections. Mater. Lett. 110, 13–15 (2013)

    Article  CAS  Google Scholar 

  20. P.K. Liaw, R. Viswanathan, K.L. Murty, E.P. Simonen, D. Frear, Microstructures and Mechanical Properties of Aging Materials (TMS, Warrendale, 1993), pp. 431–442

    Google Scholar 

  21. Z. Mei, M. Kaufmann, A. Eslambolchi, P. Johnson, in Proceedings of 48th IEEE Electronic Component Technology Conference (IEEE, Piscataway, 1998), pp. 952–961

    Google Scholar 

  22. P.T. Vianco, Circuit World 25, 6 (1998)

    Article  Google Scholar 

  23. T. Miyazaki, K. Terashima, in Proceedings 16th IEEE/CPMT Electronic Manufacturing Technology Symposium (IEEE, New York, 1994), pp. 333–339

    Chapter  Google Scholar 

  24. H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, C.R. Kao, Elimination of voids in reactions between Ni and Sn: a novel effect of silver. Scripta Mater. 66(3–4), 171–174 (2012)

    Article  CAS  Google Scholar 

  25. J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)

    Article  CAS  Google Scholar 

  26. Y. Li, K. Luo, A.B.Y. Lim, Z. Chen, F. Wu, Y.C. Chan, Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement. Mater. Sci. Eng. A 669, 291–303 (2016)

    Article  CAS  Google Scholar 

  27. N. Bao, X. Hu, Q. Li, Investigation of the interfacial reactions and growth behavior of interfacial intermetallic compound between Sn37Pb solder and Au/Ni/Kovar substrate. Mater. Res. Express 6(7), 076306 (2019)

    Article  CAS  Google Scholar 

  28. L. Zavalij, A. Zribi, R.R. Chromik, S. Pitely, P.Y. Zavalij, E.J. Cotts, Crystal structure of Au1−xNixSn4 intermetallic alloys. J. Alloys Compd. 334(1–2), 79–85 (2002)

    Article  CAS  Google Scholar 

  29. Y. Nishida, T. Yoshida, R. Ifuku, T. Sakai, First-principles study of coronene adsorption on hexagonal boron nitride substrate. Surf. Sci. 664, 56–60 (2017)

    Article  CAS  Google Scholar 

  30. K.B.J.P. Perdew, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  31. C.G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Maths Applies 6(1), 76–90 (1970)

    Article  Google Scholar 

  32. R. Kubiak, M. Wolcyrz, Refinement of the crystal structures of AuSn4 and PdSn4. J. Less-Common. Met. 97, 265–269 (1984)

    Article  CAS  Google Scholar 

  33. Y. Tian, W. Zhou, P. Wu, Effect of Ni and Pd addition on mechanical, thermodynamic, and electronic properties of AuSn4-based intermetallics: a density functional investigation. J. Electron. Mater. 45(8), 4138–4147 (2016)

    Article  CAS  Google Scholar 

  34. Y. Tian, P. Wu, First-principles study of substitution of Au for Ni in Ni3Sn4. J. Electron. Mater. 47(5), 2600–2608 (2018)

    Article  CAS  Google Scholar 

  35. H.E. Swanson, H.F. McMurdie, M.C. Morris, E.H. Evans, B. Paretzkin, Standard X-ray diffraction powder patterns. Nat. Bur. Stand (U.S.) 569, 1–95 (1953)

    Google Scholar 

  36. A. Zoroddu, F. Bernardini, P. Ruggerone, V. Fiorentini, First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN and InN: comparison of local and gradient-corrected density-functional theory. Phys. Rev. B 64, 045208 (2001)

    Article  Google Scholar 

  37. M. Lee, R.S. Gilmore, Single crystal elastic constants of tungsten monocarbide. J. Mater. Res. 17(9), 2657–2660 (1982)

    CAS  Google Scholar 

  38. R. Wu, A.J. Freeman, G.B. Olson, First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265, 376–380 (1994)

    Article  CAS  Google Scholar 

  39. X.D. Zhang, C.H. Ying, Z.J. Li, First-principles calculations of structural stability, elastic, dynamical and thermodynamic properties of SiGe, SiSn, GeSn. Superlattices Microstruct. 52(3), 459–469 (2012)

    Article  CAS  Google Scholar 

  40. C.M. Li, S.M. Zeng, Z.Q. Chen, First-principles calculations of elastic and thermodynamic properties of the four main intermetallic phases in Al–Zn–Mg–Cu alloys. Comput. Mater. Sci. 93, 210–220 (2014)

    Article  CAS  Google Scholar 

  41. W. Zhang, J.R. Smith, X.G. Wang, A.G. Evans, Influence of sulfur on the adhesion of the nickel/alumina interface. Phys. Rev. B 67(24), 245414 (2003)

    Article  Google Scholar 

  42. C.E. Dreyer, A. Janotti, C.G. Van de Walle, Brittle fracture toughnesses of GaN and AlN from first-principles surface-energy calculations. Appl. Phys. Lett. 106(21), 212103 (2015)

    Article  Google Scholar 

  43. L.M. Liu, S.Q. Wang, H.Q. Ye, First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 52(12), 3681–3688 (2004)

    Article  CAS  Google Scholar 

  44. H. Bolvardi, D. Music, J.M. Schneider, Interaction of Al with O2 exposed Mo2BC. Appl. Surf. Sci. 332, 699–703 (2015)

    Article  CAS  Google Scholar 

  45. J.E. Raynolds, J.R. Smith, G.L. Zhao, D.J. Srolovitz, Adhesion in NiAl-Cr from first principles. Phys. Rev. B 53(20), 13883 (1996)

    Article  CAS  Google Scholar 

  46. J.E. Raynolds, E.R. Roddick, J.R. Smith, D.J. Srolovitz, Impurity effects on adhesion at an interface between NiAl and Mo. Acta Mater. 47(11), 3281–3289 (1999)

    Article  CAS  Google Scholar 

  47. W. Zhang, J.R. Smith, A.G. Evans, The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50(15), 3803–3816 (2002)

    Article  CAS  Google Scholar 

  48. Y. Wei, X. Qiu, K.C. Hwang, Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity. Eng. Fract. Mech. 71(1), 107–125 (2004)

    Article  Google Scholar 

  49. A. Siddiq, S. Schmauder, Y. Huang, Fracture of bicrystal metal/ceramic interfaces: a study via the mechanism-based strain gradient crystal plasticity theory. Int. J. Plast. 23(4), 665–689 (2007)

    Article  CAS  Google Scholar 

  50. K. Chen, M. Bielawski, Interfacial fracture toughness of transition metal nitrides. Surf. Coat. Tech. 203(5–7), 598–601 (2008)

    Article  CAS  Google Scholar 

  51. H.S. Abdelkader, H.I. Faraoun, Ab initio investigation of Al/Mo2B interfacial adhesion. Comput. Mater. Sci. 50(3), 880–885 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, H., Hao, S. et al. Effect of Ni on the Au embrittlement in Sn/Au/Ni solder bump. J Mater Sci: Mater Electron 32, 28426–28435 (2021). https://doi.org/10.1007/s10854-021-07222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07222-5

Navigation