Skip to main content

Advertisement

Log in

Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the effects of nanosized Ag particles on microstructure, physical and mechanical properties of environmental-friendly low melting point eutectic Sn–Bi solder on Au/Ni-plated Cu substrate. During the soldering process a very thin Ni3Sn4 intermetallic compound (IMC) layer was found to be adhered at their interfaces in both types of solder system. This IMC layer thickness was increased with increasing the reaction time and temperature. However, from microstructural evaluation it was confirmed that the addition of Ag nanoparticles significantly affects the soldering behavior retarding the growth of IMC layer at the solder/substrate surface. The calculated activation energy for the Ni3Sn4 IMC layer for the reference solder system was about 56.45 kJ/mol, while the activation energy for Ag nanoparticles doped solder system was about 60.73 kJ/mol. Addition of Ag nanoparticles maximize the activation energy which reduce the reaction rate. Furthermore, the adding Ag nanoparticles react with matrix phase and form very fine Ag3Sn IMC particles that obstacle the formation of coarse matrix grain. This fine matrix grain and fine Ag3Sn IMC particles act as a second phase strengthening mechanism that positively impact on the storage modulus and hardness values in composite solder systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. U.R. Kattner, JOM 54(12), 45 (2002)

    Article  Google Scholar 

  3. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)

    Article  Google Scholar 

  4. Y. Ma, X. Li, W. Zhou, L. Yang, P. Wu, Mater. Des. 113, 264 (2017)

    Article  Google Scholar 

  5. A.K. Gain, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, Microelectron. Reliab. 49, 746 (2009)

    Article  Google Scholar 

  6. Z. Moser, M. Kucharski, J. Non-Cryst. Solids 156–158, 369 (1993)

    Article  Google Scholar 

  7. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  8. Z. Moser, W. Gasior, J. Pstrus, J. Ph. Equilib. 22(3), 254 (2001)

    Article  Google Scholar 

  9. L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, H. Wang, Mater. Des. 64, 15 (2014)

    Article  Google Scholar 

  10. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)

    Article  Google Scholar 

  11. D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, J. Alloys Compd. 689, 918 (2016)

    Article  Google Scholar 

  12. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 3982 (2016)

    Google Scholar 

  13. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  14. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  Google Scholar 

  15. A.K. Gain, Y.C. Chan, W.K.C. Yung, Mater. Sci. Eng. B 162, 92 (2009)

    Article  Google Scholar 

  16. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  17. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 781 (2016)

    Google Scholar 

  18. W. Dong, Y. Shi, Z. Xia, Y. Lei, F. Guo, J. Electron. Mater. 37(7), 982 (2008)

    Article  Google Scholar 

  19. M.L. Huang, Z.J. Zhang, N. Zhao, F. Yang, J. Alloys Compd. 619, 667 (2015)

    Article  Google Scholar 

  20. H.Y. Hsiao, C. Chen, Appl. Phys. Lett. 94, 092107 (2009)

    Article  Google Scholar 

  21. Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428 (2010)

    Article  Google Scholar 

  22. L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014)

    Article  Google Scholar 

  23. A.K. Gain, Y.C. Chan, Intermetallics 29, 48 (2012)

    Article  Google Scholar 

  24. J. Koo, J. Chang, Y.W. Lee, S.J. Hong, K.S. Kim, H.M. Lee, J. Alloys Compd. 608, 126 (2014)

    Article  Google Scholar 

  25. A.K. Gain, L. Zhang, J. Alloys Compd. 617, 779 (2014)

    Article  Google Scholar 

  26. J. Shen, Y.C. Chan, J. Alloys Compd. 477, 552 (2009)

    Article  Google Scholar 

  27. T. Fouzder, A.K. Gain, Y.C. Chan, A. Sharif, W.K.C. Yung, Microelectron. Reliab. 50, 2051 (2010)

    Article  Google Scholar 

  28. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011)

    Article  Google Scholar 

  29. J.P. Liu, F. Guo, Y.F. Yan, W.B. Wang, Y.W. Shi, J. Electron. Mater. 33(9), 958 (2004)

    Article  Google Scholar 

  30. T.H. Chuang, H.F. Wu, J. Electron. Mater. 40, 71 (2011)

    Article  Google Scholar 

  31. U.S. Mohanty, K.L. Lin, Mater. Sci. Eng. A 406, 34 (2005)

    Article  Google Scholar 

  32. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, JOM 55(6), 61 (2003)

    Article  Google Scholar 

  33. F. Tai, F. Guo, Z.D. Xia, Y.P. Lei, Y.F. Yan, J.P. Liu, J. Electron. Mater. 34, 1357 (2005)

    Article  Google Scholar 

  34. W.M. Chen, S.K. Kang, C.R. Kao, J. Alloys Compd. 520, 244 (2012)

    Article  Google Scholar 

  35. V. Sklyarchuk, Y. Plevachuk, R. Novakovic, I. Kaban, Monatsh. Chem. 143, 1249 (2012)

    Article  Google Scholar 

  36. H. Takao, H. Hasegawa, Mater. Trans. 45(3), 747 (2004)

    Article  Google Scholar 

  37. V. Kripesh, M. Teo, C.T. Tai, G. Vishwanadam, Y.C. Mui, in Proceedings of the 51st Electronic Components and Technology Conference, pp. 665–670 (2001)

  38. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)

    Article  Google Scholar 

  39. C. Schmetterer, H. Flandorfer, K.W. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser, Intermetallics 15, 869 (2007)

    Article  Google Scholar 

  40. A Yakymovych, Y. Plevachuk, V. Sklyarchuk, B. Sokoliuk, T. Galya, H. Ipser, J. Phase Equilib. Diffus. 38, 217 (2017)

    Article  Google Scholar 

  41. A. Yakymovych, G. Kaptay, A. Roshanghias, H. Flandorfer, H. Ipser, J. Phys. Chem. C 120, 1881 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by The University of New South Wales (UNSW) through the project InfoEd Ref: RG124326. The authors would also like to thank Mr. Tit Wah Chan, Department of Physics and Materials Science, City University of Hong Kong, for helping in evaluating the damping properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder. J Mater Sci: Mater Electron 28, 15718–15730 (2017). https://doi.org/10.1007/s10854-017-7465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7465-6

Navigation