Skip to main content
Log in

Structural, magnetic, optical, and impedance properties of SrxCo1−xFe2O4 nanoparticles prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sr2+ ions-substituted cobalt ferrite having the composition formula SrxCo1−xFe2O4 (x = 0.05, 0.10, 0.15, and 0.20) was synthesized with sol–gel method. X-ray diffraction (XRD) patterns proved that the samples had a spinel structure. The Fourier-transform infrared (FTIR) spectra showed that the samples have two characteristic bands about the intrinsic vibrations of spinel ferrite. The morphology and chemical elements were tested by scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS). The elemental state of annealed samples was examined by X-ray photoelectron spectroscopy (XPS). The magnetic data showed the coercivity increased from 954.33 Oe to 1545.54 Oe when the Sr2+ ions content increased. The optical absorption properties of annealed samples were investigated by UV–Vis spectroscopy. Complex impedance spectroscopy showed that grain resistance of Sr0.10Co0.90Fe2O4 sample was 443.9 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Hannachi, Y. Slimani, F. Ben Azzouz, A. Ekicibil, Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44, 18836–18843 (2018)

    Article  CAS  Google Scholar 

  2. Y. Slimani, MA. Almessiere, Sagar E. Shirsath, E. Hannachi, Ghulam Yasin, A. Baykal, B. Ozçelik, I. Ercan 2020 Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510: e166933

  3. Michael Rudolf Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi, Yassine Slimani, Microstructure and fluctuation-induced conductivity analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) nanowire fabrics. Crystals (2020). https://doi.org/10.3390/cryst10110986

    Article  Google Scholar 

  4. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, e165254 (2019)

    Article  Google Scholar 

  5. X. Zhu, J. Zhou, M. Chen, M. Shi, W. Feng, F. Li, Coreeshell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33, 4618–4627 (2012)

    Article  CAS  Google Scholar 

  6. Alireza Meidanchi, Omid Akhavan, Samideh Khoei, Ali A. Shokri, Zahra Hajikarimi, Nakisa Khansari. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells

  7. Y. Slimani, MA. Almessiere, M. Sertkol, SE. Shirsath, A. Baykal, M. Nawaz, S. Akhtar, B. Ozcelik, I. Ercan 2019 Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2-xO4 (0.0 ≤ x ≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. Ultrasonics Sonochem. Doi:https://doi.org/10.1016/j.ultsonch.2019.05.001

  8. M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, Sagar E. Shirsath, A. Baykal. 2019 Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2-xO4 nano-spinel ferrites. Ultrasonics Sonochem. 58: 104654

  9. Muhammad Aamir, Ismat Bibi, Sadia Ata, Farzana Majid, Norah Alwadai, Aljawhara H. Almuqrin, Hind Albalawi, Yassine Slimani, Muzaffar Bashir, Munawar Iqbal. 2021 Micro-emulsion approach for the fabrication of La1-xGdxCr1-yFeyO3: Magnetic, dielectric and photocatalytic activity evaluation under visible light irradiation. Results in Physics 23: 104023

  10. Mary George, T.L. Ajeesha, A. Manikandan, Ashwini Anantharaman, R.S. Jansi, E. Ranjith Kumar, Y. Slimani, M.A. Almessiere, A. Baykal. 2021 Evaluation of Cu-MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J. Phys. Chem. Solids 153: 110010

  11. A. Ghasemi, Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1-xSrxFe2O4 spinel thin film. J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.05.013

    Article  Google Scholar 

  12. N Rikamukti, Utari and B. Purnama. Effect of doping Strontium ions in co-precipitated cobalt ferrite. https://iopscience.iop.org/article/https://doi.org/10.1088/1742-6596/909/1/012012

  13. A.C. Lima, A.P.S. Peres, J.H. Araújo, M.A. Morales, S.N. Medeiros, J.M. Soares, D.M.A. Melo, A.S. Carriço, The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Mater Lett (2015). https://doi.org/10.1016/j.matlet.2015.01.066

    Article  Google Scholar 

  14. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Magnetic characterization of Co1-xNixFe2O4 (0<x<1) nanoparticles prepared by co-precipitation route. Phys. E 41, 593–599 (2009)

    Article  CAS  Google Scholar 

  15. D. Wang, J. Zhou, Xi. Zhou, X.-B. Ke, C. Chen, Y.-R. Wang, Y.-L. Liu, L. Ren, Facile ultrafast microwave synthesis of monodisperse MFe2O4 (M=Fe, Mn Co, Ni) superparamagnetic nanocrystals. Mater. Lett. 136, 401–403 (2014)

    Article  CAS  Google Scholar 

  16. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  CAS  Google Scholar 

  17. Y. Slimani, E. Hannachi, A. Hamrita, M.K. Ben Salem, F. Ben Azzouz, A. Manikandan and M. Ben Salem 2018 Comparative investigation of the ball milling role against hand grinding on microstructure, transport and pinning properties of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ Doi https://doi.org/10.1016/j.ceramint.2018.07.261

  18. A. D. Korkmaz, S. G¨uner, Y. Slimani, H. Gungunes, Md. Amir, A. Manikandan, A. Baykal. 2019 Microstructural, Optical, and Magnetic Properties of Vanadium-Substituted Nickel Spinel Nanoferrites. J. Supercond. Nov. Magn. () 32:1057–1065 Doi: https://doi.org/10.1007/s10948-018-4793-6

  19. M.A. Almessiere, Y. Slimani, H. Güngüneş, H.S. El Sayed, A. Baykal, AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12O19 nanohexaferrites. Ceram. Int. 44, 10470–10477 (2018). https://doi.org/10.1016/j.ceramint.2018.03.064

    Article  CAS  Google Scholar 

  20. S. Karimi, P. Kameli, H. Ahmadvand, H. Salamati, Effects of Zn-Cr-substitution on the structural and magnetic properties of Ni1-xZnxFe2-xCrxO4 ferrites. Ceram Intl 42, 16948–16955 (2016)

    Article  CAS  Google Scholar 

  21. Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, S. Guner, H. Güngüneş, M. SertkolfA. Manikandan, A. Yildiz, S. Akhtar, Sagar E. Shirsath, A. Baykal. 2019 Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties. Ultrasonics – Sonochem. 59: e104757

  22. Sultan Akhtar, Suriya Rehman, Munirah A. Almessiere, Firdos Alam Khan ,Yassine Slimani and Abdulhadi Baykal. 2019 Synthesis of Mn0.5Zn0.5SmxEuxFe1.8–2xO4 Nanoparticles via the Hydrothermal Approach Induced Anti-Cancer and Anti-Bacterial Activities. Nanomaterials 9: 1635 Doi: https://doi.org/10.3390/nano9111635

  23. H.-Y. Chen, P.-C. Chen, P-type spinel ZnCo2O4 thin films prepared using sol-gel process. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.144460

    Article  Google Scholar 

  24. F. Mikailzade, F. Önal, M. Maksutoglu, M. Zarbali, A. GÖktas. , Structure and Magnetization of Polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 Films Prepared Using Sol-Gel Technique. J. Supercond. Nov. Magn. 31, 4141–4145 (2018)

    Article  CAS  Google Scholar 

  25. S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloy. Compd. 863, e158734 (2021)

    Article  Google Scholar 

  26. K. Kumar, A. Loganathan, Structural, electrical and magnetic properties of large ionic size Sr2+ ions substituted Mg-Ferrite nanoparticles. Mater. Chem. Phys. 214, 229–238 (2018)

    Article  CAS  Google Scholar 

  27. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1-xZnxFe2O4 ferrites. Phys. B 407, 795–804 (2012)

    Article  CAS  Google Scholar 

  28. A. Goktas, A. Tumbul, Z. Aba, A. Kilic, F. Aslan, Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Optical Materials 107, e110073 (2020)

    Article  Google Scholar 

  29. A. Goktas, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: Defects-induced enhanced room temperature ferromagnetism and photoluminescence. Physica E 117, e113828 (2020)

    Article  Google Scholar 

  30. M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol-gel process. Ceram. Int. 40, 1147–1154 (2014)

    Article  CAS  Google Scholar 

  31. Ahmet Tumbul, Ferhat Aslan, Songul Demirozu, Abdullah Goktas, Ahmet Kilic, Mustafa Durgun, Maharram Z. Zarbali, Solution processed boron doped ZnO thin films: influence of different boron complexes. Mater. Res. Express 6, e035903 (2019)

    Google Scholar 

  32. F. Mikailzade, H. Türkan, F. Önal, M. Zarbali, A. Göktaş, A. Tumbul, Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol-Gel technique. Appl. Phys. A 127, 408 (2021)

    Article  CAS  Google Scholar 

  33. R. Tholkappiyan, K. Vishista. Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant. International Journal of Materials Research

  34. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloy. Compd. 509, 6756–6762 (2011)

    Article  CAS  Google Scholar 

  35. B.D. Cullity, J.W. Weymouth, Elements of X-Ray Diffraction. Am J Phys 25, e394 (1957)

    Article  Google Scholar 

  36. Kumar Mohit, Vibha Rani Gupta, Nisha Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8-xFe2O4 for antenna applications. Ceram Intl 40, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  37. Wei Zhang, Aimin Sun, Xiaoguang Pan, Yingqiang Han, Xiqian Zhao, Yu. Lichao, Zhuo Zuo, Nanzhaxi Suo, Magnetic transformation of Zn-substituted Mg-Co ferrite nanoparticles: Hard magnetism → soft magnetism. J. Magn. Magn. Mater. 506, e166623 (2020)

    Article  Google Scholar 

  38. K.H. Wu, T.H. Ting, C.C. Yang, G.P. Wang, Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni-Zn ferrite. Mater. Sci. Eng., B 123, 227–233 (2005)

    Article  Google Scholar 

  39. H. Hajihashemi, P. Kameli, H. Salamati, The Effect of EDTA on the Synthesis of Ni Ferrite Nanoparticles. J Supercond Nov Magn 25, 2357–2363 (2012)

    Article  CAS  Google Scholar 

  40. Ram A. Pawar, Sunil M. Patange, Qudsiya Y. Tamboli, V. Ramanathan, Sagar E. Shirsath. 2016 Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. Doi: https://doi.org/10.1016/j.ceramint.2016.07.122i

  41. A. Anugraha, V.K. Lakshmi, Gangothri S. Kumar, T. Raguram, K.S. Rajni, Synthesis and Characterisation of Copper Substituted Cobalt Ferrite Nanoparticles by Sol-Gel Auto Combustion Route. IOP Conf. Ser.: Mater. Sci. Eng. 577, e012059 (2019)

    Article  Google Scholar 

  42. Sonia Gaba, Ashok Kumar, Pawan S. Rana, 2018 J. Supercond. Nov. Magn

  43. M. Zhang, F. Zhao, Y. Yang, T. An, Qu. Wengang, H. Li, J. Zhang, Na. Li, Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech. 44, 1–10 (2019)

    Article  Google Scholar 

  44. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 254, 6972–6975 (2008)

    Article  CAS  Google Scholar 

  45. W.P. Wang, H. Yang, T. Xian, J.L. Jiang, XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater. Trans. 53(9), 1586–1589 (2012)

    Article  CAS  Google Scholar 

  46. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, N. Taskhandi, M. Sertkol, A. Baykal, Sagar E. Shirsath, İ. Ercan, B. Ozçelik. 2019 Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrasonics – Sonochem. 58: e104621

  47. A. Goktas, I.H. Mutlu, A. Kawashi, Growth and characterization of La1-xAxMnO3 (A=Ag and K, x= 0.33) epitaxial and polycrystalline manganite thin films derived by sol-gel dip-coating technique. Thin Solid Films 520, 6138–6144 (2012)

    Article  CAS  Google Scholar 

  48. S. Singhal, K. Chandra, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J. Solid State Chem. 180, 296–300 (2007)

    Article  CAS  Google Scholar 

  49. P.A. Shaikh et al., Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  CAS  Google Scholar 

  50. S.E. Mousavi Ghahfarokhi, E. Mohammadzadeh Shobegar. Structural, magnetic, dielectric and optical properties of Sr1-xMnxFe2O4 nanoparticles fabricated by sol-gel method. J. Alloy. Compd

  51. C. Zhao, A. Gao, Y. Yang, Tu. Cheng, A. Bhutani, K.A. Walsh, S. Gong, D.P. Shoemaker, High-quality CoFe2O4 thin films with large coercivity grown via a wet chemical route. AIP Adv. 9, 035126 (2019). https://doi.org/10.1063/1.5085232

    Article  CAS  Google Scholar 

  52. M.A. Almessiere, Y. Slimani, S. Güner, M. Nawaz, A. Baykal, F. Aldakheel, S. Akhtar, I. Ercan, İ Belenli, B. Ozçelik, Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222–8232 (2019)

    Article  CAS  Google Scholar 

  53. M.A. Almessiere, Y. Slimani, S. Güner, A. Baykal, I. Ercan, Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. J. Rare Earths 37, 871–878 (2019)

    Article  CAS  Google Scholar 

  54. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.123

    Article  Google Scholar 

  55. M.A. Almessiere, Y. Slimani, U. Kurtan, S. Guner, M. Sertkol, Sagar E. Shirsath, S. Akhtar, A. Baykal, I. Ercan. 2019 Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2-xO4 (0.0 ≤ x ≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics - Sonochemistry 58: e104638

  56. A. Sadaqat, M. Almessiere, Y. Slimani, S. Guner, M. Sertkol, H. Albetran, A. Baykal, Sagar E. Shirsath, B. Ozcelik, I. Ercan, Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceram. Int. 45, 22538–22546 (2019)

    Article  CAS  Google Scholar 

  57. Y. Slimani, M.A. Almessiere, S. Güner, N.A. Tashkandi, A. Baykal, M.F. Sarac, M. Nawaz, I. Ercan, Calcination efect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. J Mater Sci: Mater Electron 30, 9143–9154 (2019). https://doi.org/10.1007/s10854-019-01243-x

    Article  CAS  Google Scholar 

  58. A. Manikandan, L. John Kennedy, M. Bououdina, J. Judith Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249 (2014)

    Article  CAS  Google Scholar 

  59. Adel Maher Wahba, Mohamed Bakr Mohamed and N.G. Imam, Correlating structural, magnetic, and luminescence properties with the cation distribution of Co0.5Zn0.5+xFe2-xO4 nanoferrite, J. Magn. Magn. Mater. Doi:https://doi.org/10.1016/j.jmmm.2016.02.027

  60. J. Judith Vijaya, et al. 2013 Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures, Ceram. Int. Doi: https://doi.org/10.1016/j.ceramint.2013.10.145

  61. Z.Z. Lazarevic, C. Jovalekic, D.L. Sekulic, A. Milutinovic, S. Balos, M. Slankamenac et al., Structural, electrical and dielectric properties of spinel nickel ferrite prepared by soft mechanochemical synthesis. Mater. Res. Bull. 48(10), 4368–4378 (2013)

    Article  CAS  Google Scholar 

  62. K. Chandra Babu Naidu, W. Madhuri, Microwave assisted solid state reaction method: Investigations on electrical and magnetic properties NiMgZn ferrites. Mater. Chem. Phys. 181, 432–443 (2016)

    Article  Google Scholar 

  63. Sukhleen Bindra Narang, Kunal Pubby, Nickel Spinel Ferrites: a review. J. Magn. Magn. Mater. 519, e167163 (2021)

    Article  Google Scholar 

  64. Kakade, SG. , Ma, YR. , Devan, RS. , Yesh, KD. , Ramana, CV. 2016 Dielectric, complex impedance and electrical transport properties of erbium (Er3+) ion substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9-xErxO4 ). J. Phys. Chem. C 120(10): 5682-5693

  65. R.S. Devan, Y.D. Kolekar, B.K. Chougule, Effect of cobalt substitution on the properties of nickel-copper ferrite. J. Phys.: Condens Matter 18, 9809–9821 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yanchun Zhang: contributed to experiment, conceptualization, investigation, writing original draft and visualization; Aimin Sun: checked the manuscript; Liqiong Shao: helped checking the table; Zhaxi Suonan: helped in measurement of data and experimental process; Jingzhou Chen: helped checking the figure.

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, A., Shao, L. et al. Structural, magnetic, optical, and impedance properties of SrxCo1−xFe2O4 nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron 32, 21262–21277 (2021). https://doi.org/10.1007/s10854-021-06629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06629-4

Navigation