Skip to main content
Log in

Eu3+ ions doped Cu1−xCoxEu0.025Fe1.975O4 spinel ferrite nanocrystals: insights on structural, cation distribution, magnetic properties, and switching field distribution

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present investigation, the sol–gel auto-combustion process was used to synthesize spinel ferrite nanoparticles Cu1−xCoxEu0.025Fe1.975O4 with x = 0.0, 0.25, 0.5, 0.75, and 1. Through the use of various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersion X-ray analysis (EDX), Fourier transform Infrared analysis (FTIR), and magnetic measurements, the as-prepared ferrite nanoparticles have been examined and characterized. The X-ray diffraction (XRD) spectra confirmed the presence of a tetragonal spinel structure in the sample (x = 0), and the structure transformed into a cubic spinel with a space group of Fd3m as the Co content was increased. The lattice parameter changed from tetragonal phase with a = 5.820 Å and c = 8.710 Å for x = 0.00 to cubic phase with a = 8.372 Å for x = 1.00. The crystal size increases from 23.45 nm for x = 0.00 to 25.03 for x = 1.00 with increase in the amount of Co2+ content. The cation distribution for Cu1−xCoxEu0.025Fe1.975O4 spinel ferrites has been estimated. Scanning electron microphotographs (SEM) of the prepared spinel ferrite samples demonstrated well-defined crystalline nanoparticles. The existence of every major element (Co, Cu, Fe, Eu, and O) and no discernible impurities in the samples is confirmed by the EDX analysis. FTIR spectra of Cu1−xCoxEu0.025Fe1.975O4 committed the formation of the spinel nanoferrites and confirmed the solid-state reaction completion. The values of saturation magnetization (Ms), coercivity (Hc), remnant magnetization (Mr), magnetic moment (μB), squareness ratio (Mr/Ms) and anisotropy constant (K) have been estimated from the magnetic measurements. The (Ms) values increase from 22.561 emu/g for x = 0.00 to 68.794 emu/g for x = 1.00 while the (Hc) values decrease from 1898Oe for x = 0.00–1023 Oe for x = 1.00 with increasing the Co2+ content. The minor Eu+3 doped Cu1−xCoxEu0.025Fe1.975O4 nanoferrites’s switching field distribution (SFD) evaluations were calculated by considering the first derivative of the demagnetization data.

Graphical Abstract

Highlights

  • Sol–gel auto-combustion process was used to synthesize spinel ferrite nanoparticles Cu1−xCoxEu0.025Fe1.975O4.

  • XRD spectra confirmed the presence of a tetragonal spinel structure and transformed into a cubic.

  • Cation distribution for Cu1−xCoxEu0.025Fe1.975O4 spinel ferrites has been estimated.

  • SEM of the prepared spinel ferrite samples revealed well-defined crystalline nanoparticles.

  • The FTIR analysis reveals two noticeable absorption bands denoted υt and υo.

  • Magnetic measurements demonstrated that as the Co+2 concentration increased; (Ms) increased while (Hc) decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Soler MA, Lima EC, da Silva SW, Melo TF, Pimenta AC, Sinnecker JP, Azevedo RB, Garg VK, Oliveira AC, Novak MAJL (2007) Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23:9611–9617

    Article  CAS  PubMed  Google Scholar 

  2. Manova E, Kunev B, Paneva D, Mitov I, Petrov L, Estournès C, D’Orléan C, Rehspringer J-L, Kurmoo M.J.C.o.m.(2004) Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4 Chem Mater 16:5689–5696

    Article  CAS  Google Scholar 

  3. Phalake SS, Somvanshi SB, Tofail SAM, Thorat ND, Khot VM (2023) Functionalized manganese iron oxide nanoparticles: a dual potential magnetochemotherapeutic cargo in a 3D breast cancer model. Nanoscale 15:15686

    Article  CAS  PubMed  Google Scholar 

  4. Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK (2022) Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev 473(15):214809

    Article  CAS  Google Scholar 

  5. Kharat PB, Somvanshi SB, Khirade PP, Jadhav KM (2020) Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5(36):23378–23384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ayyappan S, Philip J, Raj B (2009) Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J Phys Chem C 113:590–596

    Article  CAS  Google Scholar 

  7. Nikam DS, Jadhav SV, Khot VM, Bohara R, Hong CK, Mali SS, Pawar S (2015) Cation distribution, structural, morphological and magnetic properties of Co 1−x Znx Fe2O4 (x= 0–1) nanoparticles. RSC Adv 5:2338–2345

    Article  CAS  Google Scholar 

  8. Patil K, Saleem M, Phadke S, Mishra A (2022) Structural, electrical and magnetic properties of (Cu/Co) Fe2O4 spinel ferrite materials. Appl Phys A 128:988

    Article  CAS  Google Scholar 

  9. Somvanshi SB, Patade SR, Andhare DD, Jadhav SA, Khedkar V M, Kharat PB, Khirade PP, Jadhav KM (2020) Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: Enhancement via hydrophobic-to-hydrophilic surface transformation. J Alloy Compd 835(15):155422

    Article  CAS  Google Scholar 

  10. Somvanshi SB, Jadhav SA, Gawali SS, Zakde K, Jadhav KM (2023) Core-shell structured superparamagnetic Zn-Mg ferrite nanoparticles for magnetic hyperthermia applications. J Alloy Compd 947(25):169574.

    Article  Google Scholar 

  11. Somvanshi SB, Kharat PB, Khedkar MV, Jadhav KM (2020) Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications. Ceram Int 46(6):7642–7653. 15

    Article  CAS  Google Scholar 

  12. Somvanshi SB, Kharat PB, Jadhav KM (2021) Surface functionalized superparamagnetic Zn-Mg ferrite nanoparticles for magnetic hyperthermia application towards noninvasive cancer treatment. Macromol Symp 400(1):2100124

    Article  CAS  Google Scholar 

  13. Jesus Mercy S, Parajuli D, Murali N, Ramakrishna A, Ramakrishna Y, Veeraiah V, Samatha K (2020) Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite. Appl Phys A 126:1–13

    Article  Google Scholar 

  14. Sinkó K, Manek E, Meiszterics A, Havancsák K, Vainio U, Peterlik H (2012) Liquid-phase syntheses of cobalt ferrite nanoparticles. J Nanopart Res 14:1–14

    Article  Google Scholar 

  15. Andhare DD, Patade SR, Kounsalye JS, Jadhav K (2020) Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Phys B Condens Matter 583:412051

    Article  CAS  Google Scholar 

  16. Lee C, Chang H, Jang HD (2019) Preparation of CoFe2O4-graphene composites using aerosol spray pyrolysis for supercapacitors application. Aerosol Air Qual Res 19:443–448

    Article  CAS  Google Scholar 

  17. Kumar S, Kaur T, Kumar S, Srivastava A (2015) Effect of heat treatment on properties of Sr0.7Nd0.3Co0.3Fe11.7O19. J Supercond Nov Magn 28:2935–2940

    Article  CAS  Google Scholar 

  18. Thang PD, Rijnders G, Blank DH (2005) Spinel cobalt ferrite by complexometric synthesis. J Magn Magn Mater 295:251–256

    Article  CAS  Google Scholar 

  19. Naik MM, Naik HB, Kottam N, Vinuth M, Nagaraju G, Prabhakara M (2019) Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J Sol-Gel Sci Technol 91:578–595

    Article  CAS  Google Scholar 

  20. Monisha P, Priyadharshini P, Gomathi S, Pushpanathan K (2021) Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 148:109654

    Article  CAS  Google Scholar 

  21. Yao L, Xi Y, Xi G, Feng Y (2016) Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel hydrothermal route using spent Li-ion battery. J Alloy Compd 680:73–79

    Article  CAS  Google Scholar 

  22. Fayazzadeh S, Khodaei M, Arani M, Mahdavi S, Nizamov T, Majouga A (2020) Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method. J Supercond Nov Magn 33:2227–2233

    Article  CAS  Google Scholar 

  23. Godara SK, Kaur V, Narang S, Singh M, Bhadu GR, Chaudhari JC, Mudsainiyan R, Sood AK (2019) Tunable M-type nano barium hexaferrite material by Zn2+/Zr4+ co-doping. Mater Res Express 6:116111

    Article  CAS  Google Scholar 

  24. Sharma A, Jasrotia R, Kumari N, Kumar S, Verma A, Godara SK, Ahmed J, Alshehri SM, Tamboli AM, Kalia S (2022) Tailoring the structural and magnetic traits of copper modified BaFe12O19 nanostructured hexaferrites for recording media application. J Magn Magn Mater 564:170124

    Article  CAS  Google Scholar 

  25. Massart R, Dubois E, Cabuil V, Hasmonay E (1995) Preparation and properties of monodisperse magnetic fluids. J Magn Magn Mater 149:1–5

    Article  CAS  Google Scholar 

  26. Abouhaswa AS, Badr MH, Nasr MH, Elkholy MM, El-Deen LM, Turky GM, Moustafa M, El-Hamalawy AA (2022) Investigation of crystal structure, electrical and magnetic properties of Spinel Mn-Cd ferrite nanoparticles. J Inorg Organomet Polym Mater 1–13

  27. Sharma A, Jasrotia R, Kumari N, Kumar S, Suman, Verma A, Kumar Godara S, Ahmed J, Alshehri SM, Tamboli AM, Kalia S, Batoo KM, Kumar R (2022) Tailoring the structural and magnetic traits of copper modified BaFe12O19 nanostructured hexaferrites for recording media application. J Magn Magn Mater 564:170124

    Article  CAS  Google Scholar 

  28. Apostolova I, Wesselinowa J (2009) Possible low-TC nanoparticles for use in magnetic hyperthermia treatments. Solid State Commun 149:986–990

    Article  CAS  Google Scholar 

  29. Kumar P, Chand J, Verma S, Singh M (2011) Micro-structural studies of gadolinium doped cobalt ferrites. Int J Theor Appl Sci 3:10–12

    Google Scholar 

  30. Mansour S, Al-Hazmi F, AlHammad M, Sadeq M, Abdo M (2021) Enhancing the magnetization, dielectric loss and photocatalytic activity of Co–Cu ferrite nanoparticles via the substitution of rare earth ions. J Mater Res Technol 15:2543–2556

    Article  CAS  Google Scholar 

  31. Jasrotia R, Kumari N, Verma R, Godara SK, Ahmed J, Alshehri SM, Pandit B, Kumar S, Sharma S, Maji PK (2023) Effect of rare earth (Nd3+) metal doping on structural, morphological, optical and magnetic traits of Zn–Mg nano-ferrites. J Rare Earths 41:1763–1770

    Article  CAS  Google Scholar 

  32. Kakade S, Kambale R, Kolekar Y, Ramana C (2016) Dielectric, electrical transport and magnetic properties of Er3+ substituted nanocrystalline cobalt ferrite. J Phys Chem Solids 98:20–27

    Article  CAS  Google Scholar 

  33. Suo N, Sun A, Yu L, Zuo Z, Pan X, Zhang W, Zhao X, Zhang Y, Shao L (2021) Effect of different rare earth (RE= Y3+, Sm3+, La3+, and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials. J Mater Sci Mater Electron 32:246–264

    Article  CAS  Google Scholar 

  34. Prathapani S, Vinitha M, Jayaraman TV, Das D (2014) Effect of Er doping on the structural and magnetic properties of cobalt-ferrite. J Appl Phys 115

  35. Karimi Z, Mohammadifar Y, Shokrollahi H, Asl SK, Yousefi G, Karimi L (2014) Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J Magn Magn Mater 361:150–156

    Article  CAS  Google Scholar 

  36. Choppin G, Bünzli J (1989) Lanthanide probes in life, chemical and earth sciences. CG Bunzli GR Choppin Elsevier Amsterdam, 219

  37. Bhasin V, Sharma K, Jasrotia R, Ahmed J, Kaur S, Singh M, Sood AK, Kumari S, Hussain S, Chaudhari JC (2024) Effect of Cr substitution on nickel spinel ferrite’s surface morphology, structure, antibacterial activity and magnetic properties. Inorg Chem Commun 160:111764

    Article  CAS  Google Scholar 

  38. Kaur S, Chalotra VK, Jasrotia R, Bhasin V, Kumari S, Thakur S, Ahmed J, Mehtab A, Ahmad T, Singh R (2022) Spinel nanoferrite (CoFe2O4): The impact of Cr doping on its structural, surface morphology, magnetic, and antibacterial activity traits. Optical Mater 133:113026

    Article  CAS  Google Scholar 

  39. Humbe AV, Kounsalye JS, Somvanshi SB, Kumarc A, Jadhav KM (2020) Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Mater Adv 1:880–890

    Article  CAS  Google Scholar 

  40. Somvanshi SB, Jadhav SA, Khedkar MV, Kharat PB, More SD, Jadhav KM (2020) Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram Int 46(9):13170–13179

    Article  CAS  Google Scholar 

  41. Bharati VA, Somvanshi SB, Humbe AV, Murumkar VD, Sondur VV, Jadhav KM (2020) Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J Alloy Compd 821:153501

    Article  CAS  Google Scholar 

  42. Saleem S, Irfan M, Naz MY, Shukrullah S, Munir MA, Ayyaz M, Alwadie AS, Legutko S, Petrů J, Rahman SJM (2022) Investigating the impact of Cu2+ doping on the morphological, structural, optical, and electrical properties of CoFe2O4 nanoparticles for use in electrical devices. 15, 3502.

  43. Dasari JR (2024) Comparison of the effect of Cr3+ substituted Co-Cu and Cu-Co nano ferrites on structural, DC electrical resistivity and magnetic properties. https://doi.org/10.2139/ssrn.4485419

  44. Alzoubi GM (2022) The effect of Co-doping on the structural and magnetic properties of single-domain crystalline copper ferrite nanoparticles. Magntochemistry 8:164

    Article  CAS  Google Scholar 

  45. Kanna RR, Sakthipandi K, Maraikkayar SS, Lenin N, Sivabharathy M (2018) Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J Rare Earths 36:1299–1309

    Article  Google Scholar 

  46. Trier SH, Abdali MS (2020) The structural, magnetic, and optical properties of Cu1-xCoxFe2O4 spinel ferrite and its applications. Al-Qadisiyah J Pure Sci 25:1–15

    Article  Google Scholar 

  47. Balagurov A, Bobrikov I, Maschenko M, Sangaa D, Simkin V (2013) Structural phase transition in CuFe2O4 spinel. Crystallogr Rep 58:710–717

    Article  CAS  Google Scholar 

  48. Sathiya Priya A, Geetha D, Kavitha N (2019) Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum 160:453–460

    Article  CAS  Google Scholar 

  49. Saleem S, Irfan M, Naz MY, Shukrullah S, Munir MA, Ayyaz M, Alwadie AS, Legutko S, Petrů J, Rahman S (2022) Investigating the impact of Cu2+ doping on the morphological, structural, optical, and electrical properties of CoFe2O4 nanoparticles for use in electrical devices. Materials 15:3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Quinn E, Shamblin J, Perlov B, Ewing R, Neuefeind J, Feygenson M, Gussev I, Lang M (2017) Inversion in Mg1−xNixAl2O4 spinel: new insight into local structure. J Am Chem Soc 139:10395–10402

  51. Tatarchuk TR, Bououdina M, Paliychuk ND, Yaremiy IP, Moklyak VV (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloy Compd 694:777–791

    Article  CAS  Google Scholar 

  52. Tatarchuk T, Bououdina M, Vijaya J, Kennedy L (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, vol 195, Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_22

  53. Khalaf K, Al Rawas A, Gismelseed A, Sellai A, Widatallah HM, Yousif AA, Elzain M, Shongwe M (2013) Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Phys B Condens Matter 407:795–804

    Google Scholar 

  54. Mane DR, Birajdar DD, Shirsath SE, Telugu RA, Kadam RH (2010) Structural and magnetic characterizations of Mn–Ni–Zn ferrite nanoparticles. Phys Status Solidi (A) Appl Mater 207:2355–2363

  55. Kane SN, Satalkar M (2017) Correlation between magnetic properties and cationic distribution of Zn0.85−xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J Mater Sci 52:3467–3477

    Article  CAS  Google Scholar 

  56. Aziz C, Azhdar B (2022) Synthesis of dysprosium doped cobalt ferrites nanoparticles by sol–gel auto-combustion method and influence of grinding techniques on structural, morphological, and magnetic properties. J Magn Magn Mater 542:168577

    Article  CAS  Google Scholar 

  57. Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99:1727

    Article  CAS  Google Scholar 

  58. Satheeshkumar M, Kumar ER, Srinivas C, Prasad G, Meena SS, Pradeep I, Suriyanarayanan N, Sastry D (2019) Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J Magn Magn Mater 484:120–125

    Article  CAS  Google Scholar 

  59. Badr M, Kudrevatykh N, Hassan M, Moustafa M, Rammah Y, Abouhaswa A, El-Hamalawy A (2023) Structural and magnetic analysis of Cd-Zn spinel ferrite nanoparticles. Phys Scr 98:025823

    Article  Google Scholar 

  60. Mohammed K, Al-Rawas A, Gismelseed A, Sellai A, Widatallah H, Yousif A, Elzain M, Shongwe M (2012) Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Phys B Condens Matter 407:795–804

    Article  CAS  Google Scholar 

  61. Phor L, Chahal S, Kumar V (2020) Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigations on structural and spin-interactions. J Adv Ceram 9:576–587

    Article  CAS  Google Scholar 

  62. Suman S, Chahal A, Kumar P (2020) Kumar, Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10:273

    Article  CAS  Google Scholar 

  63. Akhtar P, Akhtar MN, Baqir MA (2021) Structural and magnetic evaluations of rare-earths (Tb, Pr, Ce, Gd, Y)-doped spinel ferrites for high frequency and switching applications. J Mater Sci Mater Electron 32:7692–7703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S. Diab, A.A. EL-Hamalawy and A.S. Abouhaswa performed all the experimental work (sample preparation and its characterization) and prepared the manuscript. L.M.S. El-Deen and M. Moustafa helped significantly in the explanation and discussion of experimental results and revised the manuscript.

Corresponding author

Correspondence to R. S. Diab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diab, R.S., El-Deen, L.M.S., Moustafa, M. et al. Eu3+ ions doped Cu1−xCoxEu0.025Fe1.975O4 spinel ferrite nanocrystals: insights on structural, cation distribution, magnetic properties, and switching field distribution. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06391-z

Keywords

Navigation