Skip to main content

Advertisement

Log in

Synthesis, characterization and electrochemical evaluation of hydrogen storage capacity of graphitic carbon nitride and its nanocomposites in an alkaline environment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, synthesis of graphitic carbon nitride (g-C3N4) and its nanocomposites with monometallic nickel (Ni-g-C3N4), and bimetallic zirconium-nickel (ZrNi-g-C3N4) is reported. New materials for high storage performance are investigated eagerly in electrochemical energy applications. With this aim, the electrochemical method is used for the evaluation of hydrogen storage capacity (HSC) of the samples in the present research work. Synthesis of samples were carried out using a combination of thermal and hydrothermal methods. The evaluation of electrochemical hydrogen sorption and storage capability of g-C3N4 and its nanocomposites was done after sample characterization. Characterization techniques followed were powder X-ray diffraction (XRD), Nitrogen adsorption and desorption isotherms measurements at 77 K, thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectrometry (EDS). Cyclic voltammetric and chronopotentiometry measurements carried out in an alkaline medium helped to calculate the HSC. The discharge capacity was measured to be 82 mAhg−1 for g-C3N4, 182 mAhg−1 for Ni-g-C3N4 and 380 mAhg−1 for ZrNi-g-C3N4 at 1 mAg−1 of current density. Catalytic properties of the metal nanoparticles augment the storage capability of the g-C3N4 nanocomposites. These nanocomposites help to store hydrogen which serves as safe carrier in fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Huang, X. Yan, M. Yan, G. Zeng, C. Zhou, J. Wan, M. Cheng, W. Xue, ACS Appl. Mater. Interfaces 10, 21035 (2018)

    Article  CAS  Google Scholar 

  2. J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, ACS Appl. Mater. Interfaces 6, 16449 (2014)

    Article  CAS  Google Scholar 

  3. X. Tan, L. Kou, H.A. Tahini, S.C. Smith, Chemsuschem 8, 3626 (2015)

    Article  CAS  Google Scholar 

  4. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Nano-Micro Lett. 9, 47 (2017)

    Article  CAS  Google Scholar 

  5. A. Nasri, B. Jaleh, S. Khazalpour, M. Nasrollahzadeh, M. Shokouhimehr, Int. J. Biol. Macromol. 164, 3012 (2020)

    Article  CAS  Google Scholar 

  6. X. Guo, Y. Wang, F. Wu, Y. Ni, S. Kokot, Microchim. Acta 183, 773 (2016)

    Article  CAS  Google Scholar 

  7. W. Gong, J. Zou, S. Zhang, X. Zhou, J. Jiang, Electroanalysis 28, 227 (2016)

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Wang, Y. Li, H. Shi, Y. Xu, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Catal. Commun. 72, 24 (2015)

    Article  CAS  Google Scholar 

  9. M. Chegeni, Z. Mousavi, M. Soleymani, S. Dehdashtian, Diam. Relat. Mater. 101, 107621 (2020)

    Article  CAS  Google Scholar 

  10. S. Wojtyła, K. Śpiewak, T. Baran, J. Photochem. Photobiol. A Chem. 391, 112355 (2020)

    Article  Google Scholar 

  11. H. Li, Y. Xu, H. Sitinamaluwa, K. Wasalathilake, D. Galpaya, Chin. J. Catal. 38, 1006 (2017)

    Article  CAS  Google Scholar 

  12. N.L. Reddy, M.V. Shankar. (2020)

  13. A.A.S. Nair, R. Sundara, N. Anitha, Int. J. Hydrogen Energy 40, 3259 (2015)

    Article  CAS  Google Scholar 

  14. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, J. Mater. Chem. C 8, 10257 (2020)

    Article  CAS  Google Scholar 

  15. H.J. Lin, H.W. Li, H. Shao, Y. Lu, K. Asano, Mater. Today Energy 17, 100463 (2020)

    Article  Google Scholar 

  16. M. Zarezadeh Mehrizi, J. Abdi, M. Rezakazemi, E. Salehi, Int. J. Hydrogen Energy 45, 17583 (2020)

    Article  CAS  Google Scholar 

  17. G. Koh, Y.-W. Zhang, H. Pan, Int. J. Hydrogen Energy 37, 4170 (2012)

    Article  CAS  Google Scholar 

  18. C. Wang, H. Fan, X. Ren, J. Fang, J. Ma, N. Zhao, Mater. Charact. 139, 89 (2018)

    Article  Google Scholar 

  19. M. Ghiyasiyan-Arani, M. Salavati-Niasari, Ind. Eng. Chem. Res. 58, 23057 (2019)

    Article  CAS  Google Scholar 

  20. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  21. Y.-J. Han, S.-J. Park, Appl. Surf. Sci. 415, 85 (2017)

    Article  CAS  Google Scholar 

  22. H.H. Shen, X.T. Zu, B. Chen, C.Q. Huang, K. Sun, J. Alloys Compd. 659, 23 (2016)

    Article  CAS  Google Scholar 

  23. S.K. Singh, A.K. Singh, K. Aranishi, Q. Xu, J. Am. Chem. Soc. 133, 19638 (2011)

    Article  CAS  Google Scholar 

  24. C. Shen, W. Zhou, H. Yu, L. Du, Chin. J. Chem. Eng. 26, 322 (2018)

    Article  CAS  Google Scholar 

  25. F. Altaf, R. Batool, R. Gill, Z.U. Rehman, H. Majeed, A. Ahmad, M. Shafiq, D. Dastan, G. Abbas, K. Jacob, Renew. Energy 164, 709 (2021)

    Article  CAS  Google Scholar 

  26. M.S. Morassaei, A. Salehabadi, O. Amiri, M. Salavati-Niasari, A. Akbari, J. Alloys Compd. 826, 154023 (2020)

    Article  CAS  Google Scholar 

  27. S. Tonda, S. Kumar, S. Kandula, V. Shanker, J. Mater. Chem. A 2, 6772 (2014)

    Article  CAS  Google Scholar 

  28. T. Gholami, M. Salavati-Niasari, S. Varshoy, Int. J. Hydrogen Energy 41, 9418 (2016)

    Article  CAS  Google Scholar 

  29. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Mater. Sci. Semicond. Process. 122, 105506 (2021)

    Article  CAS  Google Scholar 

  30. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron. 28, 7784 (2017)

    Article  CAS  Google Scholar 

  31. C. Zhou, J.A. Szpunar, X. Cui, ACS Appl. Mater. Interfaces 8, 15232 (2016)

    Article  CAS  Google Scholar 

  32. T. Muhmood, A. Uddin, Chem. Phys. Lett. 753, 137604 (2020)

    Article  CAS  Google Scholar 

  33. T. Plachy, M. Masar, M. Mrlik, M. Machovsky, Z. Machovska, E. Kutalkova, I. Kuritka, Adv. Powder Technol. 30, 714 (2019)

    Article  CAS  Google Scholar 

  34. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. Prakash-Dwivedi, Z.A. ALOthman, G.T. Mola, J. King Saud Univ. Sci. 31, 257 (2019)

    Article  Google Scholar 

  35. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Ceram. Int. 47, 5487 (2020)

    Article  Google Scholar 

  36. B. Zhang, X. Ye, W. Hou, Y. Zhao, Y. Xie, J. Phys. Chem. B 110, 8978 (2006)

    Article  CAS  Google Scholar 

  37. M. Fathinezhad, M. AbbasiTarighat, D. Dastan, Environ. Nanotechnol. Monit. Manag. 14, 100307 (2020)

    Google Scholar 

  38. L. Sun, L. Liang, Z. Shi, H. Wang, P. Xie, D. Dastan, K. Sun, R. Fan, Eng. Sci. 12, 95 (2020)

    CAS  Google Scholar 

  39. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, Z. Shi, J. Mater. Sci. 56, 4254 (2021)

    Article  Google Scholar 

  40. F. Sadat, M. Salavati-niasari. (2018).

  41. M.H. Choi, Y.J. Min, G.H. Gwak, S.M. Paek, J.M. Oh, J. Alloys Compd. 610, 231 (2014)

    Article  CAS  Google Scholar 

  42. N. Liu, L. Yin, L. Kang, X. Zhao, C. Wang, L. Zhang, D. Xiang, R. Gao, Y. Qi, N. Lun, Int. J. Hydrogen Energy 35, 12410 (2010)

    Article  CAS  Google Scholar 

  43. X.P. Gao, Y. Lan, G.L. Pan, F. Wu, J.Q. Qu, D.Y. Song, P.W. Shen, Electrochem. Solid-State Lett. 4, 173 (2001)

    Article  Google Scholar 

  44. S.S. Gunasekaran, T.K. Kumaresan, S.A. Masilamani, S.Z. Karazhanov, K. Raman, R. Subashchandrabose, Mater. Lett. 273, 127919 (2020)

    Article  CAS  Google Scholar 

  45. D. Qu, X. Xu, L. Zhou, W. Li, J. Wu, D. Liu, Z. Zhong Xie, J. Li, H. Tang, Int. J. Hydrogen Energy 44, 7326 (2019)

    Article  CAS  Google Scholar 

  46. M. Kaur, K. Pal, J. Mater. Sci. Mater. Electron. 31, 10903 (2020)

    Article  CAS  Google Scholar 

  47. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, J. Mater. Chem. A 8, 5750 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Commonwealth Scholarship Commission, UK, University of Glasgow, UK, and Indian Institute of Technology Roorkee, India for all the financial and laboratory support for the research work. Authors would like to thank Professor Duncan H Gregory and his group at University of Glasgow, for all the support during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Ethics declarations

Conflict of interest

The authors declare that no competing interest influence the research in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Pal, K. Synthesis, characterization and electrochemical evaluation of hydrogen storage capacity of graphitic carbon nitride and its nanocomposites in an alkaline environment. J Mater Sci: Mater Electron 32, 12475–12489 (2021). https://doi.org/10.1007/s10854-021-05882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05882-x

Navigation