Skip to main content

Advertisement

Log in

Potential electrochemical hydrogen storage in nickel and cobalt nanoparticles-induced zirconia-graphene nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Green fuels which are sustainable in nature are becoming a reliable energy source in the era of climatic concerns. Hydrogen, a renewable clean energy carrier supplies energy three times more than that of conventional energy sources. Thus, efficient methods are developed to store hydrogen in a safe and cost-effective way. Synthesis of economical and environmental friendly nanomaterials that can be used for hydrogen storage has paramount importance in research field. Nanocomposites with good surface area and porosity emerge as effective materials in the field of sustainable hydrogen storage. We synthesized nanocomposites having metal, metal oxide and carbon content in them to explore their hydrogen storage capacity (HSC). Nickel zirconia reduced graphene oxide (Ni–ZrO2–rGO), and cobalt zirconia-reduced graphene oxide (Co–ZrO2–rGO) were synthesized hydrothermally. The confirmation of their structure, composition, and morphology were done by various characterizations. The surface area calculations of nanocomposites were carried out by nitrogen (N2) adsorption–desorption measurements. Thereafter, these samples were coated onto nickel foam and their electrochemical studies were carried out in 6 M KOH electrolyte to evaluate their HSC. The discharge capacity for Ni–ZrO2–rGO was calculated to be 416.12 mAhg−1 (1.54 wt%) and 291.38 mAhg−1 (1.07 wt%) for Co–ZrO2–rGO. These nanocomposite having all three metal, ceramic and carbon components influence HSC in a considerable way. All constituents have significant influence, as the metal part alters the electrocatalytic properties, zirconia impacts the crystalline structure and porosity is varied due to properties of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Minutillo, A. Forcina, N. Jannelli, A. Lubrano Lavadera, Energy 153, 200–210 (2018)

    Article  Google Scholar 

  2. A.A. EL-Barbary, Int. J. Hydrogen Energy 44, 20099–20109 (2019)

    Article  CAS  Google Scholar 

  3. D. Liu, C. Zeng, H. Tang, D. Zheng, R. Li, D. Qu, Z. Xie, J. Lei, Front. Energy Res. 2, 1–6 (2014)

    Google Scholar 

  4. M. Kaur, K. Pal, J. Energy Storage 23, 234–249 (2019)

    Article  Google Scholar 

  5. S.S. Mao, S. Shen, L. Guo, Prog. Nat. Sci. Mater. Int. 22, 522–534 (2012)

    Article  Google Scholar 

  6. M.D. Seo, A. Kim, H. Jung, J. Solid State Chem. 269, 151–157 (2019)

    Article  CAS  Google Scholar 

  7. D. Qu, X. Xu, L. Zhou, W. Li, J. Wu, D. Liu, Z. Xie, J. Li, H. Tang, Int. J. Hydrogen Energy 44, 7326–7336 (2019)

    Article  CAS  Google Scholar 

  8. K. Jurewicz, E. Frackowiak, F. Beguin, Appl. Phys. A 78, 981–987 (2004)

    Article  CAS  Google Scholar 

  9. R.G. Ehl, A.J. Ihde, J. Chem. Educ. 31, 226–232 (1954)

    Article  CAS  Google Scholar 

  10. A. Salehabadi, M.I. Ahmad, N. Morad, M. Salavati-Niasari, M. Enhessari, J. Alloys Compd. 790, 884–890 (2019)

    Article  CAS  Google Scholar 

  11. M. Masjediarani, M. Salavati-Niasari, Ultrason.-Sonochem. 43, 136–145 (2018)

    Article  CAS  Google Scholar 

  12. Z. Ji, X. Shen, Y. Song, G. Zhu, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 176, 711–715 (2011)

    Article  CAS  Google Scholar 

  13. M. Kaur, K. Pal, Int. J. Hydrogen Energy 41, 21861–21869 (2016)

    Article  CAS  Google Scholar 

  14. Z. Gohari Bajestani, A. Yürüm, Y. Yürüm, Int. J. Hydrog. Energy 41, 9810–9818 (2016)

    Article  CAS  Google Scholar 

  15. T. Gholami, M. Salavati-niasari, A. Salehabadi, M. Amiri, M. Shabani-nooshabadi, M. Rezaie, Renew. Energy 115, 199–207 (2018)

    Article  CAS  Google Scholar 

  16. S.K. Konda, A. Chen, Electrochem. Commun. 60, 148–152 (2015)

    Article  CAS  Google Scholar 

  17. M.-H. Choi, Y.-J. Min, G.-H. Gwak, S.-M. Paek, J.-M. Oh, J. Alloys Compd. 610, 231–235 (2014)

    Article  CAS  Google Scholar 

  18. X.P. Gao, Y. Lan, G.L. Pan, F. Wu, J.Q. Qu, D.Y. Song, P.W. Shen, Electrochem. Solid-State Lett. 4, 173–175 (2001)

    Article  Google Scholar 

  19. D. Qu, X. Xu, L. Zhou, W. Li, J. Wu, D. Liu, Z. Zhong Xie, J. Li, H. Tang, Int. J. Hydrog. Energy 44, 7326–7336 (2019)

    Article  CAS  Google Scholar 

  20. S. Seifi, S. Masoum, Int. J. Hydrogen Energy 44, 11979–11988 (2019)

    Article  CAS  Google Scholar 

  21. Y.J. Han, S.J. Park, Appl. Surf. Sci. 415, 85–89 (2017)

    Article  CAS  Google Scholar 

  22. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  23. M.A. Ashraf, Z. Liu, W.X. Peng, K. Jermsittiparsert, G. Hosseinzadeh, R. Hosseinzadeh, Ceram. Int. 46, 7446 (2020)

    Article  CAS  Google Scholar 

  24. Z. Goharibajestani, A. Yürüm, Y. Yürüm, Appl. Surf. Sci. 475, 1070–1076 (2019)

    Article  CAS  Google Scholar 

  25. R.B. Anjaneyulu, B.S. Mohan, G.P. Naidu, R. Muralikrishna, Phys. E Low-Dimensional Syst. Nanostructures 108, 105–111 (2019)

    Article  CAS  Google Scholar 

  26. L.J. Zhao, W. Zai, M.H. Wong, H.C. Man, Mater. Lett. 228, 314–317 (2018)

    Article  CAS  Google Scholar 

  27. S. Kathiresan, M.R.H. MasHaris, S. Mohan, AIP Conf. Proc. 1267, 542–543 (2010)

    Article  Google Scholar 

  28. S. Photocatalyst, Mater. Today Proc. 3, 4163–4172 (2016)

    Article  Google Scholar 

  29. O.B. Belskaya, I.G. Danilova, M.O. Kazakov, R.M. Mironenko, A.V Lavrenov, V.A. Likholobov, in Infrared Spectroscopy—Materials Science, Engineering and technology, ed. By Theophile Theophanides (IntechOpen, Russia, 2012) p. 149–178.

  30. C.K. Ostrom, A. Chen, J. Phys. Chem. C 117, 20456–20464 (2013)

    Article  CAS  Google Scholar 

  31. C. Zhang, J. Li, C. Shi, C. He, E. Liu, N. Zhao, J. Energy Chem. 23, 324–330 (2014)

    Article  CAS  Google Scholar 

  32. C. Zhou, J.A. Szpunar, X. Cui, A.C.S. Appl, Mater. Interfaces 8, 15232–15241 (2016)

    Article  CAS  Google Scholar 

  33. S. Hajialigol, S. Masoum, Int. J. Hydrog. Energy 44, 10713–10721 (2019)

    Article  CAS  Google Scholar 

  34. Y. Chen, Q. Wang, C. Zhu, P. Gao, Q. Ouyang, T. Wang, Y. Ma, C. Sun, J. Mater. Chem. 22, 5924–5927 (2012)

    Article  CAS  Google Scholar 

  35. S. Merazga, A. Cheriet, K. M’hammedi, A. Mefoued, N. Gabouze, Int. J. Hydrog. Energy 44, 9994–10002 (2019)

    Article  CAS  Google Scholar 

  36. L. Zhou, D. Liu, J. Li, H. Tang, Z. Xie, D. Qu, Int. J. Hydrogen Energy 43, 14096–14102 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wholeheartedly acknowledge the support of IIT, Roorkee, India for providing various research related facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Ethics declarations

Conflict of interest

The authors declare that no competing interest influence the research in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Pal, K. Potential electrochemical hydrogen storage in nickel and cobalt nanoparticles-induced zirconia-graphene nanocomposite. J Mater Sci: Mater Electron 31, 10903–10911 (2020). https://doi.org/10.1007/s10854-020-03641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03641-y

Navigation