Skip to main content
Log in

Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) was produced by the direct thermal-pyrolysis of urea at different temperatures without additive assistance. The physical properties of porous g-C3N4 were characterized by various measurement methods: X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ay photoelectron spectroscopy (XPS). The effect of thermal-pyrolysis temperature on electrochemical behaviors of was researched as the sulfur matrices in lithium–sulfur batteries. The g-C3N4 prepared at 550 °C with sulfur matrix exhibits the superior electrochemical performances. As the result, the sulfur/CN-550 composite cathode exhibits a high initial discharge capacity of 1262.1 mAh g−1 and delivers a specific capacity of 605.4 mAh g−1 over 500 cycles at 0.39 mA cm−2. The excellent electrochemical behavior of the g-C3N4 could be ascribed to the effective utilization of sulfur and the combination of polysulfides dissolution through physical and chemical interactions to achieve long-term circulation of the composite cathode in lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  CAS  Google Scholar 

  2. A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)

    Article  CAS  Google Scholar 

  3. R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng, F. Li, More reliable lithium sulfur batteries: status, solutions and prospects. Adv. Mater. 27, 1606823 (2017)

    Article  Google Scholar 

  4. A. Rosenaman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, Review on li-suflur battery systems: an integral prespective. Adv. Eng. Mater. 5, 1500212 (2015)

    Article  Google Scholar 

  5. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2014)

    Article  Google Scholar 

  6. A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)

    Article  CAS  Google Scholar 

  7. Y.X. Hou, J.R. Xiao, Y.F. Guo, M. Qi, A.H. Jiang, Y.W. Li, Gaseous-phase, silica-coated particles as a cathode material for high performance lithium/sulfur batteries. J. Mater. Sci. 28, 8901–8907 (2017)

    CAS  Google Scholar 

  8. S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. 28, 7264–7270 (2017)

    CAS  Google Scholar 

  9. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)

    Article  Google Scholar 

  10. X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 24, 1601759 (2017)

    Article  Google Scholar 

  11. J.R. Xiao, H.Z. Wang, X.Y. Li, Z.Y. Wang, J.F. Ma, H. Zhao, N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci. 26, 7895–7900 (2015)

    CAS  Google Scholar 

  12. J.J. Zhu, P. Xiao, H.L. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6, 16449–16465 (2014)

    Article  CAS  Google Scholar 

  13. J. Liang, L.C. Yin, X.N. Tang, H.C. Yang, W.S. Yan, L.S.H.M. Cheng, F. Li, Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium sulfur batteries. ACS Appl. Mater. Interfaces 8, 25193–25201 (2016)

    Article  CAS  Google Scholar 

  14. Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium sulfur batteries on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    Article  CAS  Google Scholar 

  15. M. Wang, Q.H. Liang, J.W. Han, Y. Tao, D.H. Liu, C. Zhang, W. Lv, Q.H. Yang, Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium sulfur batteries. Nano Res. 11, 3480–3489 (2018)

    Article  CAS  Google Scholar 

  16. Z.J. Huang, F.B. Li, B.F. Chen, T. Lu, Y. Yuan, G.Q. Yuan, Well dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl. Catal. B 136–137, 269–277 (2013)

    Article  Google Scholar 

  17. Q. Su, J. Sun, J.Q. Wang, Z.F. Yang, W.G. Cheng, S.J. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 4, 1556–1562 (2014)

    Article  CAS  Google Scholar 

  18. J. Xu, F. Wu, Q. Jiang, Y.X. Li, Mesoporous carbon nitride grafted with n-bromobutane: a high performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal. Sci. Technol. 5, 447–454 (2015)

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Di, M. Antonietti, H.R. Li, X. Chen, X.C. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010)

    Article  CAS  Google Scholar 

  20. H.J. Yan, Y. Chen, S.M. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production form water under visible light. Int. J. Hydrogen Energy 37, 125–133 (2012)

    Article  CAS  Google Scholar 

  21. G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012)

    Article  CAS  Google Scholar 

  22. Y.W. Zhang, J.H. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4, 5300–5303 (2012)

    Article  CAS  Google Scholar 

  23. Y.J. Sun, J.Z. Jiang, Y. Cao, Y. Liu, S.L. Wu, J. Zhou, Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photocunduction. Mater. Lett. 212, 288–291 (2018)

    Article  CAS  Google Scholar 

  24. H. Wei, W.A. McMaster, J.Z.Y. Tan, D.H. Chen, R.A. Caruso, Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enehanced visible light photocatalysis. J. Mater. Chem. A 6, 7236–7245 (2018)

    Article  CAS  Google Scholar 

  25. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  26. C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical Immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14, 1701986 (2018)

    Article  Google Scholar 

  27. S. Huang, L. Zhang, J. Wang, J. Zhu, P.K. Shen, In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Res. 11, 1731–1743 (2018)

    Article  CAS  Google Scholar 

  28. J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium sulfur batteries. Adv. Energy Mater. 8, 201701330 (2018)

    Google Scholar 

  29. C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018)

    Article  CAS  Google Scholar 

  30. B.H. Li, C.P. Han, Y.B. He, C. Yang, H.D. Du, Q.H. Yang, F.Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)

    Article  CAS  Google Scholar 

  31. Y.J. Zhang, S.S. Yao, R.Y. Zhuang, K.J. Luan, X.Y. Qian, J. Xiang, X.Q. Shen, T.B. Li, K.S. Xiao, S.B. Qin, Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium sulfur batteries. J. Alloy. Compd. 729, 1136–1144 (2017)

    Article  CAS  Google Scholar 

  32. Y. Jin, G.M. Zhou, F.F. Shi, D. Zhuo, J. Zhao, K. Liu, Y.Y. Liu, C.X. Zu, W. Chen, R.F. Zhang, X.Y. Huang, Y. Cui, Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nat. Commun. 18, 462 (2017)

    Article  Google Scholar 

  33. G. Babu, K. Ababtain, K.Y. Simon Ng, L.M.R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci. Rep. 5, 8763 (2015)

    Article  CAS  Google Scholar 

  34. C.Y. Fan, H.Y. Yuan, H.H. Li, H.F. Wang, W.L. Li, H.Z. Sun, X.L. Wu, J.P. Zhang, The effective design of a polysulfides-trapped spearator at the molecular level for high energy density Li-S batteries. ACS Appl. Mater. Interfaces 8, 16108–16115 (2016)

    Article  CAS  Google Scholar 

  35. D. Q.Pang.Kundu, M.Cuisinier, L.F.Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014)

    Article  Google Scholar 

  36. J.Q. Huang, B. Zhang, Z.L. Xu, S. Abouali, M.A. Garakani, J.Q. Huang, J.K. Kim, Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium sulfur batteries. J. Power Sources 285, 43–50 (2015)

    Article  CAS  Google Scholar 

  37. J.X. Song, M.L. Gordin, T. Xu, S.R. Chen, Z.X. Yu, H. Sohn, J. Lu, Y. Ren, Y.H. Duan, D.H. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high performance lithium sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)

    Article  CAS  Google Scholar 

  38. K. Han, J.M. Shen, S.Q. Hao, H.Q. Ye, C. Wolverton, M.C. Kung, H.H. Kung, Free-standing nitrogen-doped graphene paper as electrodes for high performance lithium/dissolved polysulfide batteries. ChemSusChem 7, 2542–2553 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51504101, 51874146), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150514), the China Postdoctoral Science Foundation (Grant Nos. 2017M621640, 2018T110551), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 15KJB430006), the Start-up Foundation of Jiangsu University for Senior Talents (Grant No. 15JDG014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Xue, S., Peng, S. et al. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. J Mater Sci: Mater Electron 29, 17921–17930 (2018). https://doi.org/10.1007/s10854-018-9906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9906-2

Navigation