Skip to main content

Advertisement

Log in

Synthesis of single and bimetallic oxide-doped rGO as a possible electrode for capacitive deionization

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous carbon doped with transition metal oxides is rapidly becoming a key research topic in capacitive deionization desalination. This work reports a simple method for the synthesis of rGO doped with different ratios of nickel and cobalt oxides, i.e., 0, 10, 15, 25, 50, 75, and 100 wt%. The nanocomposite material was prepared via a modified Hammer`s method, followed by a hydrothermal doping process. The prepared samples were characterized using the X-Ray diffractometer (XRD), scanning electron microscope, energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. TEM images revealed the arbitrary distribution of nickel and cobalt oxides in the rGO layer with an average particle size of 13 nm. The performance of the prepared materials was investigated ex situ, i.e., using a typical three-electrode cell. Also, it was verified in situ during the cell operation, i.e., using a two-electrode cell. Results showed that the performance of rGO was improved in the presence of Co3O4 and NiO nanoparticles as they form ternary Co3O4/NiO/rGO composites. Both XRD and EDX analyses confirmed the presence of Ni and Co in oxide form and attached to the rGO. The three-electrode cell measurements were from − 0.6 to 0.6 V in 1 M aqueous NaCl. The electrochemical measurements demonstrated that the rGO-25Ni, rGO-25Co, and rGO-15(50Ni-50Co) electrodes exhibited the best capacitive performance. Those samples achieved specific capacitances as high as 357 F g−1, 368.7 F g−1, and 461.5 F g−1, respectively. Such values are higher than those of electrodes based on rGO (82.77 F g−1), nickel oxide (2.98 F g−1), and cobalt oxide (3.8 F g−1). Better performance has been achieved using an equal ratio of bimetallic oxide loaded into the rGO than the single oxides or other ratios.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang W, He D, Zhang C, Kovalsky P, Waite TD (2017) Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res 120:229–237

    Article  CAS  PubMed  Google Scholar 

  2. Suss M, Porada S, Sun X, Biesheuvel P, Yoon J, Presser V (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 8(8):2296–2319

    Article  CAS  Google Scholar 

  3. Tang W, Kovalsky P, Cao B, He D, Waite TD (2016) Fluoride removal from brackish groundwaters by constant current capacitive deionization (CDI). Environ Sci Technol 50(19):10570–10579

    Article  CAS  PubMed  Google Scholar 

  4. Tang W, He D, Zhang C, Waite TD (2017) Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res 121:302–310

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, He D, Ma J, Tang W, Waite TD (2018) Faradaic reactions in capacitive deionization (CDI)—problems and possibilities: a review. Water Res 128:314–330. https://doi.org/10.1016/j.watres.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  6. Singh K, Porada S, de Gier H, Biesheuvel P, de Smet L (2019) Timeline on the application of intercalation materials in capacitive deionization. Desalination 455:115–134

    Article  CAS  Google Scholar 

  7. Yasin AS, Mohamed AY, Mohamed IMA, Cho DY, Park CH, Kim CS (2019) Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization. Chem Eng J 371:166–181. https://doi.org/10.1016/j.cej.2019.04.043

    Article  CAS  Google Scholar 

  8. Anderson MA, Cudero AL, Palma J (2010) Capacitive deionization as an electrochemical means of saving energy and delivering clean water: Comparison to present desalination practices: will it compete? Electrochim Acta 55(12):3845–3856

    Article  CAS  Google Scholar 

  9. Yang C, Liu Y, Ma C, Norton M, Qiao J (2015) Preparing desirable activated carbons from agricultural residues for potential uses in water treatment. Waste Biomass Valoriz 6(6):1029–1036

    Article  CAS  Google Scholar 

  10. Xie ZZ, Shang XH, Yan JB, Hussain T, Nie PF, Liu JY (2018) Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim Acta 290:666–675

    Article  CAS  Google Scholar 

  11. Xu X, Wang M, Liu Y, Lu T, Pan L (2016) Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J Mater Chem A 4(15):5467–5473

    Article  CAS  Google Scholar 

  12. Wang J, Zhou H, Zhu M, Yuan A, Shen X (2018) Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. J Alloy Compd 744:220–227

    Article  CAS  Google Scholar 

  13. Zhu G, Wang H, Xu H, Zhang L (2018) Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose. J Electroanal Chem 822:81–88

    Article  CAS  Google Scholar 

  14. Porada S, Zhao R, Van Der Wal A, Presser V, Biesheuvel P (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58(8):1388–1442

    Article  CAS  Google Scholar 

  15. Luo GM, Wang YZ, Gao LX, Zhang DQ, Lin T (2018) Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability. Electrochim Acta 260:656–663

    Article  CAS  Google Scholar 

  16. Abdelkader AM, Fray DJ (2017) Controlled electrochemical doping of graphenebased 3D nanoarchitectures electrodes for supercapacitors and capacitive deionization. Nanoscale 9:14548–14557

    Article  CAS  PubMed  Google Scholar 

  17. Chang L, Hu YH (2019) Surface-microporous graphene for high-performance capacitive deionization under ultralow saline concentration. J Phys Chem Solids 125:135–140

    Article  CAS  Google Scholar 

  18. Lv W, Sun F, Tang D-M, Fang H-T, Liu C, Yang Q-H, Cheng H-M (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21(25):9014–9019

    Article  CAS  Google Scholar 

  19. Ren L, Hui KS, Hui KN (2013) Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells. J Mater Chem A 1(18):5689–5694

    Article  CAS  Google Scholar 

  20. Mishra AK, Ramaprabhu S (2011) Functionalized graphene-based nanocomposites for supercapacitor application. J Phys Chem C 115(29):14006–14013

    Article  CAS  Google Scholar 

  21. Kate R, Khalate S, Deokate R (2017) Electrochemical properties of spray deposited nickel oxide (NiO) thin films for energy storage systems. J Anal Appl Pyrol 125:289–295

    Article  CAS  Google Scholar 

  22. Wang P, Zhou H, Meng C, Wang Z, Akhtar K, Yuan A (2019) Cyanometallic frameworkderived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors. Chem Eng 369:57–63

    Article  CAS  Google Scholar 

  23. Rakhi R, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567

    Article  CAS  PubMed  Google Scholar 

  24. Khan ZU, Yan T, Shi L, Zhang D (2018) Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures. Environ Sci Nano 5(4):980–991

    Article  Google Scholar 

  25. Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J (2010) Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim Acta 55(22):6830–6835

    Article  CAS  Google Scholar 

  26. Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228

    Article  CAS  Google Scholar 

  27. Zheng S, Wu ZS, Wang S, Xiao H, Zhou F, Sun C, Bao X, Cheng HM (2017) Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater 6:70–97

    Article  Google Scholar 

  28. Lu L, Li W, Zhou L, Zhang Y, Zhang Z, Chen Y, Liu J, Liu L, Chen W, Zhang Y (2016) Impact of size on energy storage performance of graphene based supercapacitor electrode. Electrochim Acta 219:463–469

    Article  CAS  Google Scholar 

  29. Divyapriya G, Vijayakumar KK, Nambi I (2019) Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system. Desalination 451:102–110. https://doi.org/10.1016/j.desal.2018.03.023

    Article  CAS  Google Scholar 

  30. Barakat NA, Khalil KA, El-Deen AG (2013) Development of Cd-doped Co nanoparticles encapsulated in graphite shell as novel electrode material for the capacitive deionization technology. Nano-Micro Lett 5(4):303–313

    Article  Google Scholar 

  31. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  PubMed  Google Scholar 

  32. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    Article  CAS  PubMed  Google Scholar 

  33. Chen M, Zhou Q, Du X, Zhang J, Li W, Lu Y, Zhang D, Qi P, Tang Y (2018) Synthesis of binder-free Co/CoO encapsulated in graphene as electrode material for electrochemical applications. J Alloys Compd 783:363–370

    Article  CAS  Google Scholar 

  34. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194

    Article  CAS  PubMed  Google Scholar 

  35. Park J, Kim G-P, Umh HN, Nam I, Park S, Kim Y, Yi J (2013) Co3O4 nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries. J Nanoparticle Res 15(9):1943

    Article  Google Scholar 

  36. Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884

    Article  CAS  Google Scholar 

  37. Fu B, Zhou X, Wang Y (2016) Co3O4 carbon nanofiber mats as negative electrodes for sodium-ion batteries. Mater Lett 170:21–24

    Article  CAS  Google Scholar 

  38. Fan HH, Fu DH, Shu T, Luo MJ, Zhu FF, Liu YL, Yue ST, Zheng MT (2017) Simple synthesis of bimetal oxide@graphitized carbon nanocomposites via in-situ thermal decomposition of coordination polymers and their enhanced electrochemical performance for electrochemical energy storage. Electrochim Acta 224:80–89

    Article  CAS  Google Scholar 

  39. Vijayan BL, Krishnan SG, Zain NKM, Harilal M, Yar A, Misnon II, Dennis JO, Yusoff MM, Jose R (2017) Large scale synthesis of binary composite nanowires in the Mn2O3-SnO2 system with improved charge storage capabilities. Chem Eng J 327:962–972

    Article  CAS  Google Scholar 

  40. Nie G, Lu X, Chi M, Zhu Y, Yang Z, Song N, Wang C (2017) Hierarchical α-Fe2O3@ MnO2 core-shell nanotubes as electrode materials for high-performance supercapacitors. Electrochim Acta 231:36–43

    Article  CAS  Google Scholar 

  41. Wang Z, Zhu J, Sun P, Zhang P, Zeng Z, Liang S, Zhu X (2014) Nanostructured Mn–Cu binary oxides for supercapacitor. J Alloy Compd 598:166–170

    Article  CAS  Google Scholar 

  42. Xu H, Zhuang J, Chen Y, Wu J, Zhang J (2014) Preparation and performance of Co3O4–NiO composite electrode material for supercapacitors. RSC Adv 4(30):15511–15517

    Article  CAS  Google Scholar 

  43. Shao JX, Feng JH, Zhou H, Yuan AH (2019) Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl Surf Sci 471:745–542

    Article  CAS  Google Scholar 

  44. Wu X, Han ZC, Zheng X, Yao S, Yang X, Zhai TY (2017) Core-shell structured Co3O4@ NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417

    Article  CAS  Google Scholar 

  45. Qiu JJ, Bai ZX, Dai EG, Liu SC, Liu Y (2018) NiO/Co3O4 nanoheterostructure derived from nickelocene filled ZIF-67 for supercapacitors. J Alloy Compd 763:966–974

    Article  CAS  Google Scholar 

  46. Wu J, Zhou J, Lin Q, Luo L, Lu Q (2019) Ternary Co3O4/NiO/reduced graphene oxide hybrid composites with improved electrochemical properties. Ceram Int 45(12):15394–15399

    Article  CAS  Google Scholar 

  47. Li D, Ning X-a, Huang Y, Li S (2019) Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization. Electrochim Acta 312:251–262

    Article  CAS  Google Scholar 

  48. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  49. Chen W, Fan Z, Gu L, Bao X, Wang C (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46(22):3905–3907

    Article  CAS  Google Scholar 

  50. Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20(39):8467–8469

    Article  CAS  Google Scholar 

  51. Ji Z, Zhu G, Shen X, Zhou H, Wu C, Wang M (2012) Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J Chem 36(9):1774–1780

    Article  CAS  Google Scholar 

  52. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  53. Abouali S, Garakani MA, Xu Z-L, Kim J-K (2016) NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon 102:262–272

    Article  CAS  Google Scholar 

  54. Jalili-Firoozinezhad S, Moghadam MHM, Ghanian MH, Ashtiani MK, Alimadadi H, Baharvand H, Martin I, Scherberich A (2017) Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC advances 7(63):39628–39634

    Article  CAS  Google Scholar 

  55. Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2(4):559–563

    Article  CAS  PubMed  Google Scholar 

  56. Xie L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2013) Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17(1):55–61

    Article  CAS  Google Scholar 

  57. Srivastava M, Uddin ME, Singh J, Kim NH, Lee JH (2014) Preparation and characterization of self-assembled layer by layer NiCo2O4—reduced graphene oxide nanocomposite with improved electrocatalytic properties. J Alloy Compd 590:266–276

    Article  CAS  Google Scholar 

  58. Hu N, Yang Z, Wang Y, Zhang L, Wang Y, Huang X, Wei H, Wei L, Zhang Y (2013) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2):025502

    Article  PubMed  CAS  Google Scholar 

  59. Rahdar A, Aliahmad M, Azizi Y (2015) NiO nanoparticles: synthesis and characterization. J Nanostruct 5(2):145–151

    Google Scholar 

  60. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100

    Article  CAS  PubMed  Google Scholar 

  61. Wang D, Wei A, Tian L, Mensah A, Li D, Xu Y, Wei Q (2019) Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl Surf Sci 483:593–600. https://doi.org/10.1016/j.apsusc.2019.03.345

    Article  CAS  Google Scholar 

  62. Barakat NA, Motlak M, Ghouri ZK, Yasin AS, El-Newehy MH, Al-Deyab SS (2016) Nickel nanoparticles-decorated graphene as highly effective and stable electrocatalyst for urea electrooxidation. J Mol Catal A Chem 421:83–91

    Article  CAS  Google Scholar 

  63. Yang Y-Y, Hu Z-A, Zhang Z-Y, Zhang F-H, Zhang Y-J, Liang P-J, Zhang H-Y, Wu H-Y (2012) Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance. Mater Chem Phys 133(1):363–368

    Article  CAS  Google Scholar 

  64. Zhou J-J, Wu M-K, Tao K, Li Y-L, Li Q, Chen C, Yi F-Y, Han L (2018) Tanghulu-like NiO microcubes on Co3O4 nanowires arrays anchored on Ni foam with improved electrochemical performances for supercapacitors. J Alloy Compd 748:496–503

    Article  CAS  Google Scholar 

  65. Sekhar SC, Nagaraju G, Yu J (2018) High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nanomater Energy 48:81–92

    Article  CAS  Google Scholar 

  66. Mirghni AA, Oyedotun KO, Mahmoud BA, Bello A, Ray SC, Manyala N (2019) Nickel-cobalt phosphate/graphene foam as enhanced electrode for hybrid supercapacitor. Compos B Eng 174:106953. https://doi.org/10.1016/j.compositesb.2019.106953

    Article  CAS  Google Scholar 

  67. Ma L, Shen X, Ji Z, Cai X, Zhu G, Chen K (2015) Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors. J Colloid Interface Sci 440:211–218. https://doi.org/10.1016/j.jcis.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S, Gao H, Zhou J, Jiang F, Zhang Z (2019) Hydrothermal synthesis of reduced graphene oxide-modified NiCo2O4 nanowire arrays with enhanced reactivity for supercapacitors. J Alloy Compd 792:474–480

    Article  CAS  Google Scholar 

  69. Hu C, Wang T, Dong J, Liu R, Liu H, Qu J (2018) Capacitive deionization from reconstruction of NiCoAl-mixed metal oxide film electrode based on the “memory effect”. Appl Surf Sci 459:767–773

    Article  CAS  Google Scholar 

  70. Jiang P, Wang Q, Dai J, Li W, Wei Z (2017) Fabrication of NiO@ Co3O4 core/shell nanofibres for high-performance supercapacitors. Mater Lett 188:69–72

    Article  CAS  Google Scholar 

  71. Han L, Xu Z, Wu J, Guo X, Zhu H, Cui H (2017) Controllable preparation of graphene/MnO2/Co3O4 for supercapacitors. J Alloy Compd 729:1183–1189

    Article  CAS  Google Scholar 

  72. Zuo Y, Ni J-J, Song J-M, Niu H-L, Mao C-J, Zhang S-Y, Shen Y-H (2016) Synthesis of Co3O4/NiO nanofilms and their enhanced electrochemical performance for supercapacitor application. Appl Surf Sci 370:528–535

    Article  CAS  Google Scholar 

  73. Chen Y, Liu T, Zhang L, Yu J (2019) N-doped graphene framework supported nickel cobalt oxide as supercapacitor electrode with enhanced performance. Appl Surf Sci 484:135–143

    Article  CAS  Google Scholar 

  74. Jiao X, Xia X, Liu P, Lei W, Ouyang Y, Hao Q (2017) Nickel cobaltite nanosheets strongly anchored on boron and nitrogen co-doped graphene for high-performance asymmetric supercapacitors. Nanotechnology 28(31):315403

    Article  PubMed  CAS  Google Scholar 

  75. Guy OJ, Walker K-AD (2016) Graphene functionalization for biosensor applications. In: Silicon carbide biotechnology. Elsevier, Amsterdam, pp 85–141

  76. Tusi MM, Brandalise M, Verjúlio-Silva RW, Correa OV, Villalba JC, Anaissi FJ, Neto AO, Linardi M, Spinacé EV (2010) Preparation of PtRu/C electrocatalysts by hydrothermal carbonization using different carbon sources. In: Studies in surface science and catalysis, vol 175. Elsevier, Amsterdam, pp 551–554

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mamdouh M. Nassar or Mohamed S. Mahmoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, H.M., Nassar, M.M., Abdelkareem, M.A. et al. Synthesis of single and bimetallic oxide-doped rGO as a possible electrode for capacitive deionization. J Appl Electrochem 50, 745–755 (2020). https://doi.org/10.1007/s10800-020-01435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01435-y

Keywords

Navigation