Skip to main content
Log in

Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solvothermal method was used to prepare titanium dioxide (TiO2) nanoparticles (NP’s) of various morphologies at 180 °C growth temperature. Acetic acid and oley amine were used as surfactants. The powder of TiO2 was annealed at 550 and 950 °C for 18 and 24 h. The influence of surfactants on the morphology of titania NP’s was investigated using transmission electron microscopy (TEM). The structural, optical, and molecular properties of titania NP’s are investigated by means of X-ray diffraction, UV–visible, Photoluminescence, and Fourier Transform Infrared. The physical properties, surface area and pore volume, of the samples were investigated by Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurement. The results illustrated type IV adsorption isotherms for all samples, implying the characteristics of mesoporous materials (2–50 nm). Furthermore, the hysteresis loops shifted to higher relative pressure, indicating that the specific surface area increases and the pore size decreases after heat treatment. Micrograph images acquired from TEM portrayed different shapes such as irregular spherical, rounded rectangular, truncated rhombic, and rod-like for titania NP’s when various surfactants were used. Monte-Carlo simulation carried out for pristine and rutile titania NP’s as representative samples explained the growth mechanism of titania NP’s and corroborated the formation of spherical and rod-like structures due to attractive and repulsive interactions among particle respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.H. Carolien, G. Albert, S. Joop, Aerosol synthesis of anatase titanium dioxide nanoparticles for hybrid solar cells. Chem. Mater. 15, 4617–4624 (2003)

    Article  Google Scholar 

  2. L. Hongmei, T. Tsuyoshi, L. Yungi, Zh. Jinfeng, D. Kazunari, Y. Yushan, Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater. 16, 846–849 (2004)

    Article  Google Scholar 

  3. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. 25(34), 73–79 (2014)

    Google Scholar 

  4. D. Cao-Thang, N. Thanh-Dinh, K. Freddy, D. Trong-On, Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11), 3737–3743 (2009)

    Article  Google Scholar 

  5. D. Dastan, S. W. Gosavi, N. B. Chaure, (2015) Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors, Macromol. Symp. 347:81–86.

    Article  Google Scholar 

  6. D. Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. (2016). doi:10.1007/s10854-016-5997-9

    Google Scholar 

  7. D. Dastan, N. B. Chaure, (2014) Influence of surfactants on TiO2 nanoparticles grown by Sol-Gel Technique, J. Mater. Mech. Manufact. 2 (1):21–24.

    Google Scholar 

  8. A.K. Tarek, F. Armin, R. Lars, D. Ralf, W.B. Detlef, Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 22, 2050–2060 (2010)

    Article  Google Scholar 

  9. S. Jakub, W. Paweł, S.-N. Magdalena, A. Halina, Raman spectroscopy of visible-light photocatalyst–nitrogen-doped titanium dioxide generated by irradiation with electron beam. Chem. Phys. Lett. 566, 54–59 (2013)

    Article  Google Scholar 

  10. I. Burlacov, J. Jirkovský, M. Müller, R.B. Heimann, Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy. Surf. Coat. Technol. 201, 255–264 (2006)

    Article  Google Scholar 

  11. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. 27, 12291–12296 (2016)

    Google Scholar 

  12. Ch. Anirban, K. Akira, F. Takeshi, Ch. Ming-Wei, A. Tadafumi, Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture, J. Supercrit. Fluids 58:136–141. (2011)

    Article  Google Scholar 

  13. M. Venu, K. G. Sanjeev, K.J. Prafulla, (2011) Low frequency Raman scattering of anatase titanium dioxide nanocrystals, Physica E 44:614–617.

    Article  Google Scholar 

  14. J.R. Stephanie, H. R. Al-O. Ala, L. Soo-Keun, M.S. Daniel, K.J.R. Peter, The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials. Appl. Surf. Sci. 252, 7948–7952 (2006)

    Article  Google Scholar 

  15. K.K. Rahul, Gh. Harshad, S. Deepa, C.Kh. Kartic, S.S. Raman, Room temperature synthesis of titanium dioxide nanoparticles of different phases in water in oil microemulsion. Coll. Surf. A 369, 75–81 (2010)

    Article  Google Scholar 

  16. Z. Nicolas, A.Z. Maria-Helena, T. Iris, H. Christof, Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation, Mater. Chem. Phys. 153, 274–284 (2015)

    Article  Google Scholar 

  17. Y.A. Amira, A.K. Tarek, O. Torsten, B. Detlef, Photocatalytic activities of different well-defined single crystal TiO2 surfaces: anatase versus rutile. J. Phys. Chem. Lett. 2, 2461–2465 (2011)

    Article  Google Scholar 

  18. Sh. Laifa, Zh. Xiaogang, L. Hongsen, Y. Changzhou, C. Guozhong, Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J. Phys. Chem. Lett 2, 3096–3101 (2011)

    Article  Google Scholar 

  19. H.Md. Nasim, M.G. Betar, J.Sh. Nisarg, Sh-H. Yang, T.H. Paula, Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications. Nano Lett. 13, 4610–4619 (2013)

    Article  Google Scholar 

  20. P.S. Dipti, J. Naresh, K. Rohit, R. Sakthivel, P. Sony, T. Das, J. Kalidoss, P.S. Mukherjee, A. Tiwari, Synthesis and characterization of titania nanorods from ilmenite for photocatalytic annihilation of E. coli. J. Photochem. Photobiol. B 140, 69–78 (2014)

    Article  Google Scholar 

  21. W. Zubin, T. Qunwei, H. Benlin, Ch.. Xiaoxu, Ch. Haiyan, L. Yu, Titanium dioxide/calcium fluoride nanocrystallite for efficient dye sensitized solar cell. A strategy of enhancing light harvest. J. Power Sour. 275, 175–180 (2015)

    Article  Google Scholar 

  22. G. Hanyang, H. Guoxin, Sh. Wenfeng, Zh. Kunxu, (2014) Colloidal monolayer titania quantum dots prepared by hydrothermal synthesis in supercritical water, J. Supercrit. Fluids 88:126–133.

    Article  Google Scholar 

  23. A.V. Anuj, M. Krishnamurthi, Effect of anatase-brookite mixed phase titanium dioxide nanoparticles on the high temperature decomposition kinetics of ammonium perchlorate, Mater. Chem. Phys. 139, 537–542 (2013)

    Article  Google Scholar 

  24. Zh. Guo-Wen, H. Guo-Hua, X. Wei-Liang, X. Xiong-Fa, L. Dan-Ni, Y.-H. Xu, Enhanced photocatalytic performance of titania nanotubes modified with sulfuric acid. J. Mol. Catal. A 363(364), 423–429 (2012)

    Google Scholar 

  25. R. Jiang, H.-Y. Zhu, H.-H. Chen, J. Yao, Y.-Q. Fu, Z.-Y. Zhang, Y.-M. Xu, Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Appl. Surf. Sci. 319, 189–196 (2014)

    Article  Google Scholar 

  26. M.F. Vanesa, L.S. Edgardo, N.B. Mirta, R.P. Luis, Direct modification with tungstophosphoric acid of mesoporous titania synthesized by urea-templated sol–gel reactions. J. Coll. Interface Sci. 327, 403–411 (2008)

    Article  Google Scholar 

  27. N.Sh. Godlisten, S.M. Imran, J.J. Sun, E. Marion, A. Nadir, M.S. Haider, S.J. Kang, H.T. Kim, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue. Powder Technol. 258, 99–109 (2014)

    Article  Google Scholar 

  28. Ch. Wei-Lun, S. Hung-Wei, Ch. Wen-Chang, Synthesis and properties of photosensitive polyimide– nanocrystalline titania optical thin films. Eur. Polym. J. 45, 2749–2759 (2009)

    Article  Google Scholar 

  29. A.E. Shalan, M.M. Rashad, Y. Youhai, L.-C. Monica, M.S.A. Abdel-Mottaleb, Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim. Acta 89, 469–478 (2013)

    Article  Google Scholar 

  30. N.Sh.. Godlisten, E. Marion, S.M. Imran, J.J. Sun, T.K. Hee, Sol–gel synthesis of photoactive kaolinite-titania: effect of the preparation method and their photocatalytic properties. Appl. Surf. Sci. 331, 98–107 (2015)

    Article  Google Scholar 

  31. B. Muhammad-Sadeeq, L. Cheng, Z. Yinxiang, Y. Minghao, W. Qili, M. Wu, Z. Lu, Y. Tong, Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sour. 272, 946–953 (2014)

    Article  Google Scholar 

  32. N.Sh. Godlisten, E. Gideon, V.Q. Dang, N.K. You, H.Sh. Young, A. Hilonga, J.-K. Kim, H.T. Kim, Two step synthesis of a mesoporous titania–silica composite from titanium oxychloride and sodium Silicate. Powder Technol. 217, 489–496 (2012)

    Article  Google Scholar 

  33. Y. J. Kyeong, B. P. Seung, A. Masakazu, (2005) Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature, J. Photochem. Photobiol. A 170:247–252.

    Article  Google Scholar 

  34. N.R. Khalid, E. Ahmed, H. Zhanglian, M. Ahmad, Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites. Appl. Surf. Sci. 263, 254–259 (2012)

    Article  Google Scholar 

  35. A. Bahari, A. Qhavami, Electrical and nanostructural characteristics of R-, Fe-, S-CNT electrodes of microbial field effect transistors. J. Mater. Sci. 27, 5934–5942 (2016)

    Google Scholar 

  36. R. Gholipur, A. Bahari, DNG Metamaterials: preparation and characterization of silver nanoparticles in the dielectric medium. Mater. Lett. 180, 123–126 (2016)

    Article  Google Scholar 

  37. M. Shahbazi, A. Bahari, Sh. Ghasemi, Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric. Synth. Met. 221, 332–339 (2016)

    Article  Google Scholar 

  38. C.Y. Jimmy, Y. Jiaguo, H. Wingkei, J. Zitao, Zh.. Lizhi, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    Article  Google Scholar 

  39. F.M. Hasmath, M. Sankaran, Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads. Int. J. Biol. Macromol. 70, 420–426 (2014)

    Article  Google Scholar 

  40. Y. Yongheng, X. Tao, H. Guangwei, J. Zhongyi, W. Hong, Fabrication of sulfonated poly(ether ether ketone)-based hybridproton-conducting membranes containing carboxyl or aminoacid-functionalized titania by in situ sol-gel process. J. Power Sour. 276, 271–278 (2015)

    Article  Google Scholar 

  41. X. Tao, H. Weiqiang, Sh.. Xiaohui, W. Hong, L. Xicheng, J. Wang, Zh.. Jiang, Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J. Power Sour. 196, 4934–4942 (2011)

    Article  Google Scholar 

  42. L. P. Donald, M. L. Gary, S. K. George, Introduction to spectroscopy, 3rd edn. (Thomson Learning, Washington DC, 2001), pp. 20–100.

    Google Scholar 

  43. D. Archana, K.S. Brijesh, D. Joydeep, P.K. Dutta, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 95, 530–539 (2013)

    Article  Google Scholar 

  44. K. E. Saisy, K. K. Suma, J. Rani, (2012) Effect of titanium dioxide on the thermal ageing of polypropylene, Polym. Degrad. Stab. 97:615–620.

    Article  Google Scholar 

  45. S. Aihua, L. Zhixiang, L. Ming, X. Gaojie, L. Yong, P. Cui, Room temperature synthesis of spherical mesoporous titania. Powder Technol. 201, 130–137 (2010)

    Article  Google Scholar 

  46. L. H. Rohan, A. C. Jonathan, L. Rasmus, M. H. James, P. B. Robert, (2011) In-situ preparation of poly(2-hydroxyethyl methacrylate)-titania hybrids using G-radiation, Polymer, 52:4471–4479.

    Article  Google Scholar 

  47. V. Iswarya, M. Bhuvaneshwari, A.A. Sruthi, I. Siddharth, Ch. Gouri, P.T. Chandrasekaran, G.M. Bhalerao, S. Chakravarty, A.M. Raichur, N. Chandrasekaran, A. Mukherjee, Combined toxicity of two crystalline phases (anatase and rutile) of titania nanoparticles towards freshwater microalgae: chlorella sp. Aquat. Toxicol. 161, 154–169 (2015)

    Article  Google Scholar 

  48. W. Ming, L. Yanqiong, Zh.. Junmin, G. Weimin, L. Yuncang, C. Wen, P. Hodgson, Synthesis and characterization of nanostructured Ag on porous titania. Appl. Surf. Sci. 257, 4836–4843 (2011)

    Article  Google Scholar 

  49. P.S. Mohanty, D. Paloli, J.J. Crassous, E. Zaccarelli, P. Schurtenberger, Effective interactions between soft-repulsive colloids: experiments, theory, and simulations. J. Chem. Phys. 140, 0949011–09490110 (2014)

    Article  Google Scholar 

  50. G. Malescio, Complex phase behavior from simple potentials. J. Phys. 19, 0731011–07310123 (2007)

    Google Scholar 

  51. J.B. Delfau, H. Ollivier, C. Lopez, B. Blasius, E. Emilio Hernandez Gar C, Pattern formation with repulsive soft-core interactions: discrete particle dynamics and Dean-Kawasaki equation. Phys. Rev. E 94, 0421201–04212013 (2016)

    Article  Google Scholar 

  52. J. Fornleitner, G. Kahl, (2008) Lane formation Vs. cluster formation in two-dimensional square-shoulder systems—a genetic algorithm approach EPL, 82:180011–180016.

    Article  Google Scholar 

  53. G. Malescio, G. Pellicane, Stripe patterns in two-dimensional systems with core-corona molecular architecture. Phys. Rev. E 70, 0212021–0212026 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dastan.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Chaure, N. & Kartha, M. Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci: Mater Electron 28, 7784–7796 (2017). https://doi.org/10.1007/s10854-017-6474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6474-9

Keywords

Navigation