Skip to main content
Log in

Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn–3.5Ag solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work describes the microstructural changes and their impacts on the electrical resistivity, elastic modulus and damping property of a eutectic Sn–3.5wt% Ag solder material when exposed to high temperature. A detail microstructural study was conducted through the scanning electron microscopy with energy-dispersive spectroscopy analysis and electron backscattered diffraction technique. In as-cast eutectic Sn–Ag solder alloy, sub-micrometer size Ag3Sn intermetallic compound (IMC) particles and bamboo-like dendritic structure with a dimension of length 20–30 µm and width 3–5 µm formed during solidification. However, after thermal aging treatment at 150 °C for 60 days, the fine Ag3Sn IMC particles and β-Sn grain appeared with coarse microstructure with the formation of twinning having the <100> twin axis and 60° rotation. As a result, microstructure and Sn-crystal orientation of Sn–Ag solder greatly impact on its overall properties and turned inferior. From material properties evaluation, it was confirmed that the electrical resistivity, elastic and shear moduli values were significantly reduced with aging time. Consequently, the values of damping capacity improved due to the reduction of moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Lee, K.S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, M. Ueshima, Microelectron. Reliab. 51, 2290 (2011)

    Article  Google Scholar 

  2. A.A. El-Daly, T.A. Elmosalami, W.M. Desoky, M.G. El-Shaarawy, A.M. Abdraboh, Mater. Sci. Eng. A 618, 389 (2014)

    Article  Google Scholar 

  3. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 781 (2016)

    Google Scholar 

  4. M.M. A.S.M.A. Haseeb, S.L. Arafat, Y.M. Tay, Leong, J. Electron. Mater. 46, 5503 (2017)

    Article  Google Scholar 

  5. A.K. Gain, L. Zhang, J. Mater. Sci. 28, 9363 (2017)

    Google Scholar 

  6. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  7. A.K. Gain, L. Zhang, J. Mater. Sci. 28, 4885 (2017)

    Google Scholar 

  8. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  9. A.K. Gain, Y.C. Chan, A. Sharif, W.K.C. Yung, Microelectron. Eng. 86(11), 2347 (2009)

    Article  Google Scholar 

  10. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  11. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 506, 216 (2010)

    Article  Google Scholar 

  12. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloys Compd. 489(2), 678 (2010)

    Article  Google Scholar 

  13. A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. 26(9), 7039 (2015)

    Google Scholar 

  14. J.W. Yoon, J.H. Bang, C.W. Lee, S.B. Jung, J. Alloys Compd. 627, 276 (2015)

    Article  Google Scholar 

  15. A.K. Gain, L. Zhang, Microelectron. Reliab. 83, 101 (2018)

    Article  Google Scholar 

  16. M. Pourmajidian, R. Mahmudi, A.R. Geranmayeh, S. Hashemizadeh, S. Gorgannejad, J. Electron. Mater. 45, 764 (2016)

    Article  Google Scholar 

  17. Y. Wang, J. Han, L. Ma, Y. Zuo, F. Guo, J. Electron. Mater. 45, 6095 (2016)

    Article  Google Scholar 

  18. M. Sahin, E. Cadirli, J. Mater. Sci.: Mater. Electron. 23, 484 (2012)

    Google Scholar 

  19. N. Chawla, Int. Mater. Rev. 54(6), 368 (2009)

    Article  Google Scholar 

  20. A.K. Gain, L. Zhang, J. Mater. Sci. 27(7), 7524 (2016)

    Google Scholar 

  21. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 3982 (2016)

    Google Scholar 

  22. D.S. Steinberg, Vibration Analysis for Electronic Equipment, Second edn. (Wiley, New York, 1998)

    Google Scholar 

  23. A.K. Gain, L. Zhang, J. Alloys Compd. 617, 779 (2014)

    Article  Google Scholar 

  24. S.H. Chang, S.K. Wu, Scripta Mater. 63, 957 (2010)

    Article  Google Scholar 

  25. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 11273 (2016)

    Google Scholar 

  26. S.H. Chang, S.K. Wu, Scripta Mater. 64, 757 (2011)

    Article  Google Scholar 

  27. E.H. Wong, S.K.W. Seah, V.P.W. Shim, Microelectron. Reliab. 48, 1747 (2008)

    Article  Google Scholar 

  28. X. Hu, Y. Li, Z. Min, J. Alloys Compd. 582, 341 (2014)

    Article  Google Scholar 

  29. G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.A.A. Mohd Salleh, K. Nogita, J. Alloys Compd. 685, 471 (2016)

    Article  Google Scholar 

  30. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)

    Article  Google Scholar 

  31. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Sci. Eng. A 662, 258 (2016)

    Article  Google Scholar 

  32. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49(1–2), 1 (2005)

    Article  Google Scholar 

  33. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, JOM 55(6), 61 (2003)

    Article  Google Scholar 

  34. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 17(11), 2775 (2002)

    Article  Google Scholar 

  35. S.K. Seo, S.K. Kang, D.Y. Shih, H.M. Lee, J. Electron. Mater. 38(2), 257 (2009)

    Article  Google Scholar 

  36. A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman, Y. Xing, E.J. Cotts, J. Electron. Mater. 33(12), 1412 (2004)

    Article  Google Scholar 

  37. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)

    Article  Google Scholar 

  38. K.D. Kim, D.D.L. Chung, J. Electron. Mater. 31(9), 933 (2002)

    Article  Google Scholar 

  39. P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458 (2009)

    Article  Google Scholar 

  40. S.K. Wu, S.H. Chang, W.L. Tsia, H.Y. Bor, Mater. Sci. Eng. A 528, 6020 (2011)

    Article  Google Scholar 

  41. A.V. Granato, K. Lucke, J. Appl. Phys. 52, 7136 (1981)

    Article  Google Scholar 

  42. Z. Trojanova, W. Riehemann, H. Ferkel, P. Lukac, J. Alloys Compd. 310(1–2), 396 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by UNSW, Australia (Project No. RG124326). Authors are grateful to Mr. Tit Wah Chan, Physics and Materials Science Department, CityU, for assisting the damping capacity test. We would also like to thank Dr. M. Z. Quadir, Electron Microscopic Unit, UNSW, for helping the EBSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn–3.5Ag solder. J Mater Sci: Mater Electron 29, 14519–14527 (2018). https://doi.org/10.1007/s10854-018-9586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9586-y

Navigation