Skip to main content
Log in

Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of separate additions of 1.5 wt.% Zn and 1.5 wt.% Sb on the creep behavior of Sn-3.5 wt.% Ag lead-free solder alloy was investigated by impression testing. The tests were carried out under constant punching stresses in the range of 60–120 MPa and at temperatures in the range of 298–370 K. Both of the ternary alloys showed creep resistances higher than that of the eutectic binary Sn-3.5Ag alloy. The superior creep resistance of the ternary Sn-3.5Ag-1.5Sb alloy is attributed to the strong solid solutioning effect of antimony in the tin matrix, while the formation of AgZn particles and refinement of the Ag3Sn precipitates account for the higher creep resistance of the Sn-3.5Ag-1.5Zn alloy. The average stress exponents of 8.2, 8.5, and 8.6 and activation energies of 47.4 kJ mol−1, 45.3 kJ mol−1, , and 43.3 kJ mol−1 were obtained for Sn-3.5Ag, Sn-3.5Ag-1.5Zn, and Sn-3.5Ag-1.5Sb, respectively. These activation energies are close to 46 kJ mol−1 for dislocation pipe diffusion of tin. This, together with the stress exponents of 8.2–8.6, suggests that dislocation climb controlled by dislocation pipe diffusion is the predominant creep mechanism in these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. Rep. 27, 95 (2000).

    Article  Google Scholar 

  2. A.R. Geranmayeh and R. Mahmudi, J. Mater. Sci. 40, 3361 (2005).

    Article  Google Scholar 

  3. I.E. Anderson, B.A. Cook, J.L. Harringa, and R.L. Terpstra, JOM 54, 26 (2002).

    Article  Google Scholar 

  4. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Mater. Sci. Eng. A 427, 60 (2006).

    Article  Google Scholar 

  5. G. Zeng, S. Xue, L. Zhang, and L. Gao, J. Mater. Sci. Mater. Electron. 22, 565 (2011).

    Article  Google Scholar 

  6. A.R. Geranmayeh and R. Mahmudi, J. Electron. Mater. 34, 1002 (2005).

    Article  Google Scholar 

  7. R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz, J. Alloys Compd. 427, 124 (2007).

    Article  Google Scholar 

  8. R. Mahmudi, A.R. Geranmayeh, H. Noori, N. Jahangiri, and H. Khanbareh, Mater. Sci. Eng. A 487, 20 (2008).

    Article  Google Scholar 

  9. S. Liu, S.B. Xue, P. Xue, and D.X. Luo, J. Mater. Sci. Mater. Electron. 26, 4389 (2015).

    Article  Google Scholar 

  10. M.L. Huang, C.M.L. Wu, and L. Wang, J. Electron. Mater. 34, 1373 (2005).

    Article  Google Scholar 

  11. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A 39, 349 (2008).

    Article  Google Scholar 

  12. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, J. Mater. Res. 31, 3146 (2002).

    Article  Google Scholar 

  13. V.I. Igoshev, J.I. Kleiman, D. Shanguan, S. Wong, and U. Michon, J. Electron. Mater. 29, 1356 (2000).

    Article  Google Scholar 

  14. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. Rep. 44, 1 (2004).

    Article  Google Scholar 

  15. M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, J. Appl. Phys. Lett. 63, 15 (1993).

    Article  Google Scholar 

  16. M. McCormack and S. Jin, J. Electron. Mater. 23, 635 (1994).

    Article  Google Scholar 

  17. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A 379, 401 (2004).

    Article  Google Scholar 

  18. A. Fawzy, N. Habib, M. Sobhy, E. Nassr, and G. Saad, Mater. Sci. Technol. 24, 488 (2008).

    Article  Google Scholar 

  19. R. Mahmudi and S. Mahin-Shirazi, Mater. Des. 32, 5027 (2011).

    Article  Google Scholar 

  20. R. Mahmudi, M. Pourmajidian, A.R. Geranmayeh, S. Gorgannejad, and S. Hashemizadeh, Mater. Sci. Eng. A 565, 236 (2013).

    Article  Google Scholar 

  21. D. Mitlin, C.H. Raeder, and R.W. Messler, Metall. Mater. Trans. 30A, 115 (1999).

    Article  Google Scholar 

  22. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  Google Scholar 

  23. R. Mahmudi, A.R. Geranmayeh, B. Zahiri, and M.H. Marvasti, J. Mater. Sci. Mater. Electron. 21, 58 (2010).

    Article  Google Scholar 

  24. R. Mahmudi and M. Eslami, J. Electron. Mater. 39, 2495 (2010).

    Article  Google Scholar 

  25. A.R. Geranmayeh, G. Nayyeri, and R. Mahmudi, Mater. Sci. Eng. A 547, 110 (2012).

    Article  Google Scholar 

  26. F. Yang and J.C.M. Li, Mater. Sci. Eng. Rep. 74, 233 (2013).

    Article  Google Scholar 

  27. M. Kangooie, R. Mahmudi, and A.R. Geranmayeh, J. Electron. Mater. 39, 215 (2010).

    Article  Google Scholar 

  28. G.P. Vassilev, E.S. Dobrev, S.K. Evtimova, and J.C. Tedenac, J. Alloys Compd. 327, 285 (2001).

    Article  Google Scholar 

  29. C. Wei, Y.C. Liu, Y.J. Han, J.B. Wan, and K. Yang, J. Alloys Compd. 464, 301 (2008).

    Article  Google Scholar 

  30. A.K. Mukherjee, J.E. Bird, and J.E. Dorn, ASM Trans. Q. 62, 155 (1969).

    Google Scholar 

  31. S.N. Chu and J.C.M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  Google Scholar 

  32. G. Nayyeri and R. Mahmudi, Mater. Sci. Eng. A 527, 669 (2010).

    Article  Google Scholar 

  33. L. Rotherham, A.D.N. Smith, and G.B. Greenough, J. I. Met. 79, 439 (1951).

    Google Scholar 

  34. M.L. Huang, L. Wang, and C.M.L. Wu, J. Mater. Res. 17, 2897 (2002).

    Article  Google Scholar 

  35. F. Ochoa, X. Deng, and N. Chawala, J. Electron. Mater. 33, 1596 (2004).

    Article  Google Scholar 

  36. J.H.L. Pang, B.S. Xiong, and T.H. Low, Electronic Components and Technology Conference (2004), p. 1333.

  37. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, and J. Wei, J. Electron. Mater. 39, 223 (2010).

    Article  Google Scholar 

  38. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. 36A, 99 (2005).

    Article  Google Scholar 

  39. O.D. Sherby and P.M. Burke, Prog. Mater Sci. 1, 325 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmajidian, M., Mahmudi, R., Geranmayeh, A.R. et al. Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy. J. Electron. Mater. 45, 764–770 (2016). https://doi.org/10.1007/s11664-015-4197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4197-3

Keywords

Navigation