Skip to main content
Log in

Effect of isothermal aging on microstructure, electrical resistivity and damping properties of Sn–Ag–Cu solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study investigates the changes in microstructures and their effects on electrical resistivity, moduli, hardness and damping properties in an environmental-friendly eutectic Sn–3.0Ag–0.5Cu (wt%) solder alloy when exposed to harsh service environments. A thorough microstructural investigation was conducted by scanning electron microscopy with diffraction analysis and transmission electron microscopy. In the as-received Sn–Ag–Cu solder alloy, very-fine needle-shaped Ag3Sn and Cu6Sn5 intermetallic compound (IMC) particles are found to be uniformly dispersed in the eutectic colony. However, after exposing at harsh service environments (e.g., aging temperature at 150 °C for various aging time) these IMC particles were appeared with coarse structure. This coarsening nature of IMC particles degraded the mechanical properties of electronic interconnections. This was confirmed by measuring a range of electrical and mechanical properties that included electrical resistivity, Young’s moduli, shear moduli and microhardness. A comparison between the as-received and isothermal aging solder alloy shows that the electrical resistivity of as-received and 60 days isothermal aged alloys was about 12.5 and 10.0 μΩ cm, respectively. Further, the degradation in shear moduli and hardness was about 27.3 and 25.5%, respectively. However the isothermal aged solder alloy displayed high damping property as compare to the as-received alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.L. Silva, A. Garcia, J.E. Spinelli, J. Alloys Compd. 691, 600 (2017)

    Article  Google Scholar 

  2. A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, Mater. Sci. Eng. A 603, 1 (2014)

    Article  Google Scholar 

  3. Z. Yang, W. Zhou, P. Wu, Mater. Sci. Eng. A 590, 295 (2014)

    Article  Google Scholar 

  4. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  5. H.R. Kotadia, P.D. Howes, S.D. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  6. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 781 (2016)

    Google Scholar 

  7. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  8. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 11273 (2016)

    Google Scholar 

  9. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)

    Article  Google Scholar 

  10. L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014)

    Article  Google Scholar 

  11. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 7524 (2016)

    Google Scholar 

  12. G. Chen, H. Peng, V.V. Silberschmidt, Y.C. Chan, C. Liu, F. Wu, J. Alloys Compd. 685, 680 (2016)

    Article  Google Scholar 

  13. A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. 26, 7039 (2015)

    Google Scholar 

  14. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 506, 216 (2010)

    Article  Google Scholar 

  15. E.A. Eid, A.N. Fouda, M.E.-S. Duraia, Mater. Sci. Eng. A 657, 104 (2016)

    Article  Google Scholar 

  16. S.H. Chang, S.K. Wu, Scripta Mater. 64, 757 (2011)

    Article  Google Scholar 

  17. A.K. Gain, L. Zhang, J. Alloys Compd. 617, 779 (2014)

    Article  Google Scholar 

  18. A.K. Gain, Y.C. Chan, Microelectron. Reliab. 54, 945 (2014)

    Article  Google Scholar 

  19. ASTM International, Standard test method for dynamic Young’s modulus, shear Modulus, and Poisson’s ratio by impulse excitation of vibration. ASTM E1876- 09 (ASTM International, West Conshohocken, 2009)

    Google Scholar 

  20. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Sci. Eng. A 662, 258 (2016)

    Article  Google Scholar 

  21. R. Novakovic, T. Lanata, S. Delsante, G. Borzone, Mater. Chem. Phys. 137, 458 (2012)

    Article  Google Scholar 

  22. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)

    Article  Google Scholar 

  23. K.D. Kim, D.D.L. Chung, J. Electron. Mater. 31(9), 933 (2002)

    Article  Google Scholar 

  24. P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458 (2009)

    Article  Google Scholar 

  25. A.K. Gain, L. Zhang, J. Mater. Sci. 27, 3982 (2016)

    Google Scholar 

  26. Y. Sutou, T. Omori, N. Koeda, R. Kainuma, K. Ishida, Mater. Sci. Eng. A 438440, 743 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by The University of New South Wales (UNSW) through the project InfoEd Ref: RG124326. The authors would also like to thank Mr. Tit Wah Chan, Department of Physics and Materials Science, City University of Hong Kong, for helping in evaluating the damping properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Effect of isothermal aging on microstructure, electrical resistivity and damping properties of Sn–Ag–Cu solder. J Mater Sci: Mater Electron 28, 9363–9370 (2017). https://doi.org/10.1007/s10854-017-6675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6675-2

Keywords

Navigation