Skip to main content
Log in

Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.X. Wang and H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014).

    Article  Google Scholar 

  2. F. Song, S.W.R. Lee, K. Newman, B. Sykes, and S. Clark, in Electronic Components and Technology Conference (ECTC) (2007), pp. 364–372.

  3. S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, and W.K.C. Yung, Microelectron. Eng. 86, 2086 (2009).

    Article  Google Scholar 

  4. Y. Shi, J. Liu, Y. Yan, Z. Xia, Y. Lei, F. Guo, and X. Li, J. Electron. Mater. 37, 507 (2008).

    Article  Google Scholar 

  5. Y. Li, K. Luo, A.B.Y. Lim, Z. Chen, F. Wu, and Y.C. Chan, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 669, 291 (2016).

    Article  Google Scholar 

  6. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan, and A. Simch, J. Alloys Compd. 688, 143 (2016).

    Article  Google Scholar 

  7. G. Chen, F. Wu, C. Liu, V.V. Silberschmidt, and Y.C. Chan, J. Alloys Compd. 656, 500 (2016).

    Article  Google Scholar 

  8. A.K. Gain and L. Zhang, J. Mater. Sci. Mater. Electron. 27, 7524 (2016).

    Article  Google Scholar 

  9. D. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajri, and M. Petraroli, Mater. Lett. 53, 333 (2002).

    Article  Google Scholar 

  10. M. Amagai, Microelectron. Reliab. 48, 1 (2008).

    Article  Google Scholar 

  11. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, and H.X. Gao, J. Electron. Mater. 35, 1672 (2006).

    Article  Google Scholar 

  12. D.C. Lin, G.X. Wang, T.S. Srivatsana, M. Al-Hajri, and M. Petraroli, Mater. Lett. 57, 3193 (2003).

    Article  Google Scholar 

  13. A.K. Gain, Y.C. Chan, and W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011).

    Article  Google Scholar 

  14. B. Huang, G. Chen, F. Wu, W. Xia, L. Mo, and H. Liu, in 15th International Conference on Electronic Packaging Technology (ICEPT) (2014), pp. 243–246.

  15. S. Chellvarajoo, M.Z. Abdullah, and Z. Samsudin, Mater. Des. 67, 197 (2015).

    Article  Google Scholar 

  16. J.-S. Lee, K.-M. Chu, D. Y. Jeon, R. Patzelt, D. Manessis, and A. Ostmann, in Electronic Components and Technology Conference (ECTC) (2006), pp. 244–249.

  17. A. Nadia and A.S.M.A. Haseeb, J. Mater. Sci. Mater. Electron. 23, 86 (2012).

    Article  Google Scholar 

  18. A. Nadia and A.S.M.A. Haseeb, Solder. Surf. Mt. Technol. 23, 68 (2011).

    Article  Google Scholar 

  19. S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, and M.Z. Quadir, Intermetallics 33, 8 (2013).

    Article  Google Scholar 

  20. S.L. Tay, A.S.M.A. Haseeb, and M.R. Johan, Solder. Surf. Mt. Technol. 23, 10 (2011).

    Article  Google Scholar 

  21. A.S.M.A. Haseeb and S.L. Tay, Intermetallics 19, 707 (2011).

    Article  Google Scholar 

  22. Y.H. Chan, M.M. Arafat, and A.S.M.A. Haseeb, Solder. Surf. Mt. Technol. 25, 91 (2013).

    Article  Google Scholar 

  23. A.S.M.A. Haseeb, Y.M. Leong, and M.M. Arafat, Intermetallics 54, 86 (2014).

    Article  Google Scholar 

  24. M.M. Arafat, A.S.M.A. Haseeb, and M.R. Johan, Solder. Surf. Mt. Technol. 23, 140 (2011).

    Article  Google Scholar 

  25. A.S.M.A. Haseeb, M.M. Arafat, and M.R. Johan, Mater. Charact. 64, 27 (2012).

    Article  Google Scholar 

  26. K.K. Xiang, A.S.M.A. Haseeb, M.M. Arafat, and G. Yingxin, in 4th Asia Symposium on Quality Electronic Design (ASQED) (2012), pp. 297–301.

  27. Y.-W. Yen, W.-T. Chou, Y. Tseng, C. Lee, and C.-L. Hsu, J. Electron. Mater. 37, 73 (2008).

    Article  Google Scholar 

  28. A.S.M.A. Haseeb, M.M. Arafat, S.L. Tay, and A. Nadia, in 15th International Conference on Advances in Materials & Processing Technologies (AMPT) (2012), Paper ID: MAT-11774.

  29. B.K. Dhindaw, Bull. Mat. Sci. 22, 665 (1999).

    Article  Google Scholar 

  30. G. Wilde and J.H. Perepezko, Mater. Sci. Eng. A Struct. Mater. 283, 25 (2000).

    Article  Google Scholar 

  31. A.R. Kennedy and A.E. Karantzalis, Mater. Sci. Eng. A Struct. Mater. 264, 122 (1999).

    Article  Google Scholar 

  32. G.K. Sujan, A.S.M.A. Haseeb, and A.B.M. Afifi, Mater. Charact. 97, 199 (2014).

    Article  Google Scholar 

  33. L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollár, Surf. Sci. 411, 186 (1998).

    Article  Google Scholar 

  34. V. Kripesh, P.-S. Teo, C.T. Chong, and G. Vishwanadam, in 51st Electronic Components and Technology Conference (2001), pp. 665–670.

  35. G. Balasubramanian, S. Sen, and I.K. Puri, Phys. Lett. A 376, 860 (2012).

    Article  Google Scholar 

  36. V.Y. Rudyak and S.L. Krasnolutskii, Phys. Lett. A 378, 1845 (2014).

    Article  Google Scholar 

  37. V.Y. Rudyak, Adv. Nanoparticles 2, 266 (2013).

    Article  Google Scholar 

  38. R. Ashayer, S.H. Mannan, S. Sajjadi, M.P. Clode, and M.M. Miodownik, in 9th Electronics Packaging Technology Conference (EPTC) (2007), pp. 109–113.

  39. S.M.L. Nai, J. Wei, and M. Gupta, Thin Solid Films 504, 401 (2006).

    Article  Google Scholar 

  40. S.L. Tay, University of Malaya, M.Eng.Sc. Thesis (2011).

  41. F. Gao and T. Takemoto, in 7th International Conference on Thermal, Mechanical and Multiphysics Stimulation and Experiments in Micro-electronics and Microsytems, (EuroSimE) (2006), pp. 1–7.

  42. F. Gao, T. Takemoto, and H. Nishikawa, J. Electron. Mater. 35, 2081 (2006).

    Article  Google Scholar 

  43. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, J. Electron. Mater. 32, 1203 (2003).

    Article  Google Scholar 

  44. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, J. Electron. Mater. 35, 479–485 (2006).

    Article  Google Scholar 

  45. M.M. Arafat, University of Malaya, M.Eng.Sc. Thesis (2012).

  46. Y.W. Wang, C.C. Chang, and C.R. Kao, J. Alloys Compd. 478, L1 (2009).

    Article  Google Scholar 

  47. J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, and S.B. Jung, J. Alloys Compd. 486, 142 (2009).

    Article  Google Scholar 

  48. Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, J. Alloys Compd. 478, 121 (2009).

    Article  Google Scholar 

  49. A. Fick, J. Membr. Sci. 100, 33 (1995).

    Article  Google Scholar 

  50. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A Struct. Mater. 420, 39 (2006).

    Article  Google Scholar 

  51. F. Wang, X. Ma, and Y. Qian, Scr. Mater. 53, 699 (2005).

    Article  Google Scholar 

  52. W.H. Qi, Physica B 368, 46 (2005).

    Article  Google Scholar 

  53. H.W. Sheng, K. Lu, and E. Ma, Acta Mater. 46, 5195 (1998).

    Article  Google Scholar 

  54. M. Zhang, MYu Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, and L.H. Allen, Phys. Rev. B 62, 10548 (2000).

    Article  Google Scholar 

  55. M.A. Shandiz and A. Safaei, Mater. Lett. 62, 3954 (2008).

    Article  Google Scholar 

  56. A.P. Chernyshev, Mater. Lett. 63, 1525 (2009).

    Article  Google Scholar 

  57. P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, and C.C. Yang, Thin Solid Films 517, 4956 (2009).

    Article  Google Scholar 

  58. K. Nogita, Intermetallics 18, 145 (2010).

    Article  Google Scholar 

  59. T. Laurila, J. Hurtig, V. Vuorinen, and J.K. Kivilahti, Microelectron. Reliab. 49, 242 (2009).

    Article  Google Scholar 

  60. C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, Intermetallics 15, 1471 (2007).

    Article  Google Scholar 

  61. F. Gao, J. Qu, and T. Takemoto, J. Electron. Mater. 39, 426 (2010).

    Article  Google Scholar 

  62. M.G. Cho, H.Y. Kim, S.-K. Seo, and H.M. Lee, Appl. Phys. Lett. 95, 021905 (2009).

    Article  Google Scholar 

  63. J. Liang, N. Dariavach, P. Callahan, and D. Shangguan, Mater. Trans. 47, 317 (2006).

    Article  Google Scholar 

  64. G.F. Carter and D.E. Paul, Materials Science and Engineering (Almere: ASM International, 1991).

    Google Scholar 

  65. W.G. Moffatt, The Handbook of Binary Phase Diagrams (Schenectady, NY: Genium Publishing Co, 1990)

  66. D.H. Killpatrick, J. Phys. Chem. Solids 25, 1499 (1964).

    Article  Google Scholar 

  67. S. Chellvarajoo, M.Z. Abdullah, and C.Y. Khor, Mater. Des. 82, 206 (2015).

    Article  Google Scholar 

  68. W. Zhang, Y. Zhong, and C. Wang, J. Mater. Sci. Technol. 28, 661 (2012).

    Article  Google Scholar 

  69. Y. Tang, G.Y. Li, and Y.C. Pan, J. Alloys Compd. 554, 195 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. M. A. Haseeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseeb, A.S.M.A., Arafat, M.M., Tay, S.L. et al. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging. J. Electron. Mater. 46, 5503–5518 (2017). https://doi.org/10.1007/s11664-017-5591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5591-9

Keywords

Navigation