Skip to main content
Log in

Improved dielectric strength and loss tangent by interface modification in PI@BCZT/PVDF nano-composite films with high permittivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ba0.859 Ca0.141 Zr0.106 Ti0.894 (BCZT) nano-particles were modified by polyimide (PI) through a chemical coating method. And the PI@BCZT/polyvinylidene fluoride (PVDF) flexible composite films were fabricated by solution casting method. The transmission electron microscopy and scanning electron microscopy results show that the nano-particles is about 50 nm, PI is uniformly coated on the surface of BCZT nano-particles about 7–10 nm as well as there are uniform and improved dispersion in the matrix after modification. A series of dielectric properties were carried out. The results show the 50 vol% composites own a remarkably enhanced dielectric permittivity (εr = 130) at 100 Hz. After modification, the breakdown strength has increased from 20 to 96 kV mm−1 and the loss tangent is reduced from 1.8 to 0.2 at 100 Hz compare with un-modified composites in 40 vol% dopant. With the increase of dopant, ferroelectricity of composites can be enhanced. The optimal residual polarization is 40 vol% PI@BCZT composites, which possess 1.025 μC/cm2 under 50 kV/mm external electric field. In addition, after modification, thermo-gravimetric analysis exhibits the degradation temperature Td5% and Td10% of PI@BCZT/PVDF composites can be enhanced about 5–10 °C and show better thermal stability than un-modified composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Compos. Part B 47, 314–319 (2013)

    Article  Google Scholar 

  2. R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, S. Ekhelikar, Compos. Part B 43, 3406–3411 (2012)

    Article  Google Scholar 

  3. A.S. Roy, A. Parveen, R. Deshpande, R. Bhat, A. Koppalkar, J. Nanopart. Res. 15, 1337 (2013)

    Article  Google Scholar 

  4. A.S. Roy, K.R. Anilkumar, M.V.N. Ambika Prasad, J. Appl. Poly. Sci. 121, 675–680 (2011)

    Article  Google Scholar 

  5. A.S. Roy, S. Gupta, S. Gupta, G. Madras, P.C. Ramamurty, Compos. Part B 58, 134–139 (2014)

    Article  Google Scholar 

  6. G.L. Wu, Y.H. Cheng, K.K. Wang, W.Q. Wang, J. Mater. Sci. 27, 5592–5599 (2016)

    Google Scholar 

  7. J.Q. Lin, G.R. Chen, W.L. Yang, Z.C. Jiang, H.D. Li, L. Wang, Z.H. Yang, X. Wang, Q.Q. Lei, Appl. Phys. A 122, 310 (2013)

    Article  Google Scholar 

  8. X.J. Yang, Z.M. Yang, C.H. Mao, J. Du, Rare Met. 25, 250–254 (2006)

    Article  Google Scholar 

  9. Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, Nature 419, 284–287 (2002)

    Article  Google Scholar 

  10. Z.M. Dang, T. Zhou, S.H. Yao et al., Adv. Mater. 21, 2077–2082 (2009)

    Article  Google Scholar 

  11. J.Q. Lin, G.R. Chen, W.L. Yang, H. Li, Q.Q. Lei, J. Polymer. Res. 23, 152 (2016)

    Article  Google Scholar 

  12. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Exp. Polym. Lett. 4, 632–643 (2013)

    Article  Google Scholar 

  13. A.K. Zak, W.C. Gan, W.H. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37, 1653–1660 (2011)

    Article  Google Scholar 

  14. X.G. Tang, K.H. Chew, J. Wang, H.L.W. Chan, Appl. Phys. Lett. 85, 991–993 (2004)

    Article  Google Scholar 

  15. T.S. Kalkur, W.C. Yi, E. Philofsky, L. Kammerdiner, Mater. Lett. 57, 4147–4150 (2003)

    Article  Google Scholar 

  16. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  17. T.A. Jain, K.Z. Funga, J. Chan, J. Alloy. Compd. 468, 370–374 (2009)

    Article  Google Scholar 

  18. Z.M. Dang, H. Wang, Y. Zhang, J. Qi, Macromol. Rapid. Commun. 26, 1185–1189 (2005)

    Article  Google Scholar 

  19. Y.J. Niu, K. Yu, Y.Y. Bai, H. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 108–115 (2015)

    Article  Google Scholar 

  20. Y.P. Wang, Z.J. Peng, J. Ceram. Soc. Jpn. 122, 719–724 (2014)

    Article  Google Scholar 

  21. S. Sasidhar, T.P. Thomas, F. Dogan, Mat. Sci. Eng. B 176, 1422–1429 (2011)

    Article  Google Scholar 

  22. J.Q. Lin, Y. Liu, W.L. Yang, Z.B. Xie, P.P. Zhang, X.K. Li, H. Lin, G.R. Chen, Q.Q. Lei, J. Polym. Res. 21, 531 (2014)

    Article  Google Scholar 

  23. B.C. Luo, X.H. Wang, Q.C. Zhao, S.T. Li, Compos. Sci. Technol. 112, 1–7 (2015)

    Article  Google Scholar 

  24. G.L. Wu, Y.H. Cheng, Z.D. Wang, K.K. Wang, A.L. Feng, J. Mater. Sci. 28, 576–581 (2016)

    Google Scholar 

  25. G.L. Wu, Y.Q. Wang, K.K. Wang, A.L. Feng, RSC Adv. 6, 102542–102548 (2016)

    Article  Google Scholar 

  26. G.L. Wu, J.L. Li, K.K. Wang, Y.Q. Wang, C. Pan, A.L. Feng, J. Mater. Sci. (2017). doi:10.1007/s10854-017-6343-6

    Google Scholar 

  27. G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, J. Alloy. Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  28. H.J. Wu, G.L. Wu, L.D. Wang, Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  29. Y.L. Shen, L.L. Chen, S.H. Jiang, Y.C. Ding, W.H. Xu, H.Q. Hou, Mater. Lett. 160, 515–517 (2015)

    Article  Google Scholar 

  30. A.K. Gupta, R. Bajpa, J.M. Keller, J. Polym. Res. 15, 275–283 (2008)

    Article  Google Scholar 

  31. A.K. Zak, W.C. Gan, W.H.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37, 1653–1660 (2011)

    Article  Google Scholar 

  32. L. Yu, P. Cebe, Polymer 50, 2133–2141 (2009)

    Article  Google Scholar 

  33. Z.M. Wang, K. Zhao, X.L. Guo, W. Sun, H.L. Jiang, X.Q. Han et al., Mater. Chem. C 3, 4762–4770 (2015)

    Article  Google Scholar 

  34. V. Turnhout, G.M. Sessler, Electrets, Topics in Applied Physics (Springer, Berlin, 1980), pp. 99–163

    Google Scholar 

  35. A.J. Lovinger, Ferroelectric polymers. Science 220, 1115–1121 (1983)

    Article  Google Scholar 

  36. M. Feizpour, H.B. Bafrooei, R. Hayati, T. Ebadzadeh, Ceram. Int. 40, 871–877 (2014)

    Article  Google Scholar 

  37. J. Pavlič, B. Malič, T. Rojac, J. Eur. Ceram. Soc. 34, 285–295 (2014)

    Article  Google Scholar 

  38. W. Ma, J. Zhang, S. Chen, X. Wang, Appl. Surf. Sci. 254, 5635–5642 (2008)

    Article  Google Scholar 

  39. Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, Adv. Mater. 21, 2077–2082 (2009)

    Article  Google Scholar 

  40. Y. Yang, B.P. Zhu, Z.H. Lu, Appl. Phys. Lett. 102, 042904 (2013)

    Article  Google Scholar 

  41. T.P. Schuman, S. Siddabattuni, O. Cox, F. Dogan, Compos. Interfaces 17, 719–731 (2010)

    Article  Google Scholar 

  42. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, IEEE Trans. Dielectr. Electr. Insul. 12, 629–643 (2005)

    Article  Google Scholar 

  43. K. Yu, H. Wang H, Y. Zhou, Y. Bai, Y. Niu, Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 113, 034105 (2013)

    Article  Google Scholar 

  44. C.V. Chanmal, J.P. Jog, Express Polym. Lett. 2, 294–301 (2008)

    Article  Google Scholar 

  45. K. Mazur, Eng. Plast. 28, 539–539 (1995)

    Google Scholar 

  46. Y. Rao, C.P. Wong, J.M. Qu, in Proceedings of the Electronic Components and Technology Conference IEEE, 2000, pp. 615–618

  47. E. Brookner, Aspects Modern Radar (Artech House, Norwood, 1988)

    Google Scholar 

  48. N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462–2466 (1993)

    Article  Google Scholar 

  49. A.S. Roy, K.R. Anilkumar, M.V.N. Ambika Prasad, Ferroelectrics 413, 279–290 (2011)

    Article  Google Scholar 

  50. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 085014 (2009)

    Article  Google Scholar 

  51. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, M.Q. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  Google Scholar 

  52. L. Flandin, L. Vouyovitch, A. Beroual, J.L. Bessede, N.D. Alberola, J. Phys. D 38, 144–155 (2005)

    Article  Google Scholar 

  53. M.G. Cain, M. Stewart, M.G. Gee, G.J. Hill, D. Hall, Electronic Property Measurements for Piezoelectric Ceramics: Technical Notes. (National Physical Laboratory, Teddington, 1998), pp. 1361–4061

    Google Scholar 

  54. G.S. Grest, M.H. Cohen, Adv. Chem. Phys. 48, 455–525 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61372013), National Natural Science Foundation of Heilongjiang Province (Grant No. E201258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Yang or Lizhu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Lin, J., Yang, W. et al. Improved dielectric strength and loss tangent by interface modification in PI@BCZT/PVDF nano-composite films with high permittivity. J Mater Sci: Mater Electron 28, 13360–13370 (2017). https://doi.org/10.1007/s10854-017-7173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7173-2

Keywords

Navigation