Skip to main content
Log in

Exact size control of KTa0.5Nb0.5O3 nanoparticles using flexible hydrothermal conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

KTa0.5Nb0.5O3 (KTN) nanoparticles with a perovskite structure were synthesized in orthogonal experiments under different hydrothermal conditions. Controlled sizes were generated by analyzing four variables using an orthogonal array experimental design (OA16 matrix): reaction temperature, KOH concentration, reaction time and solution volume. The effects of the four factors on the KTN nanoparticle size were systematically examined using range analysis and analysis of variance. The KOH concentration had the largest effect on the average size of the KTN nanoparticles. The KTN particles with a designed grain size can be obtained by controlling the four effect factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Nestler, K. Potzger, H. Stöcker et al., Appl. Phys. A Mater. Sci. Process. 105, 103–109 (2011)

    Article  ADS  Google Scholar 

  2. K.J. Choi, M. Biegalski, Y.L. Li et al., Science 306, 1005–1009 (2004)

    Article  ADS  Google Scholar 

  3. F.S. Chen, J.E. Geusic, S.K. Kurtz et al., J. Appl. Phys. 37, 388–398 (1966)

    Article  ADS  Google Scholar 

  4. W.L. Yang, Z.X. Zhou, B. Yang et al., Appl. Surf. Sci. 257, 7221–7225 (2011)

    Article  ADS  Google Scholar 

  5. X.P. Wang, J.Y. Wang, H.J. Zhang et al., J. Appl. Phys. 103, 033513 (2008)

    Article  ADS  Google Scholar 

  6. H.J. Scheel, J. Sommerauer, J. Cryst. Growth 62, 291–298 (1983)

    Article  ADS  Google Scholar 

  7. H. Khemakhem, J. Ravez, A. Daoud et al., Ferroelectrics 188, 85–93 (1996)

    Article  Google Scholar 

  8. N.W. Schubringn, J.V. Mantese, A.L. Michelietal et al., Phys. Rev. Lett. 68, 1778–1781 (1992)

    Article  ADS  Google Scholar 

  9. L.A. Boatner, E. Kratzig, R. Orlowski, Ferro. 27, 247–250 (1980)

    Article  Google Scholar 

  10. S. Triebwasser, Phys. Rev. 114, 63–68 (1959)

    Article  ADS  Google Scholar 

  11. C.J. Lu, A.X. Kuang, J. Mater. Sci. 32, 4421–4427 (1997)

    Article  ADS  Google Scholar 

  12. K. Suzuki, W. Sakamoto, T. Yogo et al., J. Am. Ceram. Soc. 82, 1463–1466 (1999)

    Article  Google Scholar 

  13. A.X. Kuang, C.J. Lu, G.Y. Huang et al., J. Cryst. Growth 149, 80–86 (1995)

    Article  ADS  Google Scholar 

  14. W.L. Yang, Z.X. Zhou, B. Yang et al., J. Am. Ceram. Soc. 94, 2489–2493 (2011)

    Article  Google Scholar 

  15. X. Wan, X.J. Qiao, Q.G. Ren et al., Appl. Phys. A Mater. Sci. Process. 119, 773–781 (2015)

    Article  ADS  Google Scholar 

  16. W.Z. Wang, S. Meng, M. Tan et al., Appl. Phys. A Mater. Sci. Process. 118, 1347–1355 (2015)

    Article  ADS  Google Scholar 

  17. M. Manna, S. Jackson, J. Kolis, J. Solid State Chem. 183, 2675–2680 (2010)

    Article  ADS  Google Scholar 

  18. Y.M. Hu, H.S. Gu, Z.L. Hu et al., J. Colloid. Interf. Sci. 310, 292–296 (2007)

    Article  Google Scholar 

  19. H.H. Gu, K.J. Zhu, J.H. Qiu et al., Adv. Powder Technol. 23, 558–561 (2012)

    Article  Google Scholar 

  20. Y.M. Hu, H.S. Gu, D. Zhou et al., J. Am. Ceram. Soc. 93, 609–613 (2010)

    Article  Google Scholar 

  21. K.Y. Zheng, D.M. Zhang, Z.C. Zhong et al., Appl. Surf. Sci. 256, 1317–1321 (2009)

    Article  ADS  Google Scholar 

  22. N. Wei, D.M. Zhang, X.Y. Han et al., J. Am. Ceram. Soc. 90, 1434–1437 (2007)

    Article  Google Scholar 

  23. C.W. Cui, F. Shi, Y.G. Li et al., J. Mater. Sci.: Mater. Electron. 21, 349–354 (2009)

    Google Scholar 

  24. X. Wu, D.Y.C. Leung, Appl. Energ. 88, 3615–3624 (2011)

    Article  Google Scholar 

  25. D.P. Zhang, Y.L. Luo, Applied Probability and Statistics (Beijing Higher Education Press, Beijing, 2000)

    Google Scholar 

  26. J.F. Liu, X.L. Li, Y.D. Li, J. Cryst. Growth 247, 419–424 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant NO. 1144404) and the Natural Science Foundation of Heilongjiang Province (No. QC2015062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Chen, G., Yang, W. et al. Exact size control of KTa0.5Nb0.5O3 nanoparticles using flexible hydrothermal conditions. Appl. Phys. A 122, 310 (2016). https://doi.org/10.1007/s00339-016-9919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9919-8

Keywords

Navigation